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Abstract
Construction of urban green spaces may effectively mitigate urban heat island effect. Better design of green spaces may improve
their thermal performance, and therefore provide better ecosystem services in cities. Aiming at providing empirical evidence and
further insights for urban park design, field measurement of air temperature (Ta) and relative humidity (Rh) was conducted in
Tiantan Park in Beijing, China. Results show that within Tiantan park, 1.29–2.71 °C air temperature difference and 1.27–5.16%
relative humidity difference were observed at different time. Among all parameters, radiation condition (β = 0.872; β = 0.723)
and land cover composition (β = 0.601) are dominant influencing factor on daytime and nighttime Ta respectively. Among
different vegetation types, deciduous trees have significant cooling and humidifying effects at noon in summer (ρ = −0.65);
evergreen trees have little effects in summer, but a humidifying effect in winter (ρ = −0.58); grasslandmay give rise to daytime Ta
in both summer and winter (ρ = 0.48; ρ = 0.52). Effects of the shape of different vegetation types remain unclear, while more
compact imperious surfaces may lead to lower daytime Ta (ρ = 0.55; ρ = 0.67). Understanding such microclimate conditions in
an urban park may assist designers to create a more thermally friendly environment in future.
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Introduction

Human activities have induced global climate change. By
2017, compared with pre-industrial period, the world has ex-
perienced a 0.8–1.2 °C temperature increase (Allen et al.
2018). Global warming leads to loss of biodiversity, extreme
meteorological events etc., which are all potential threats to
human beings (Costello et al. 2009; Patz et al. 2005). Cities
with dense population and strong human activities are facing
even more challenges. Although cities account for only 2% of
global area, more than 50% of world population reside in
cities (UN 2019), and it is estimated that 20–40% world pop-
ulation have experienced a temperature increase greater than
1.5 °C (Allen et al. 2018). A large number of man-made con-
structions have changed the thermal properties of underlying
surfaces, caused poor ventilation and released a large number

of anthropogenic heats, resulting in significantly higher air
temperature (Ta) in cities than in rural areas, which is com-
monly known as urban heat island (UHI) effect (Oke et al.
1989).

Urban greening has long been proved as an effective way
to regulate thermal environment and enhance thermal comfort
as well as human perception (Bartesaghi Koc et al. 2018;
Bowler et al. 2010; Gago et al. 2013; Hami et al. 2019).
Studies have implemented various methods to investigate fac-
tors on urban greening’s cooling and humidifying effects.
Remotely sensed data were wildly used to investigate thermal
performance of different landscape pattern on city scale
(Masoudi and Tan 2019; Sun and Chen 2017; Xu et al.
2017). While field measurements and simulation are usually
used at local and micro scale to investigate influence of land
cover composition (Huang et al. 2008; Toparlar et al. 2018;
Yan et al. 2014b), radiation condition (Cohen et al. 2012;
Kong et al. 2016; Morakinyo et al. 2017), albedo (Taha
1997), urban geometry (Jamei et al. 2016; Johansson 2006;
Taleghani et al. 2014), etc. on urban climate. Results of such
studies may provide insight for urban planning and design.

Urban parks, an assemblage of abundant vegetation, have
pronounced effects on local and micro scale climate. Previous
empirical studies have proved that parks not only are cold and
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wet islands in cities, but can influence its vicinity areas
(Barradas 1991; Chang et al. 2007; Jansson et al. 2007;
Potchter et al. 2006; Yan et al. 2018). Most of the studies on
urban park’s thermal performance implement simulation
method and have investigated how different configurations
of landscape elements (i.e. vegetation, pavement, etc.) and
vegetation types (deciduous and evergreen trees, shrubs and
turf) may influence park’s thermal performance (Sodoudi
et al. 2018; Sun et al. 2017; Toparlar et al. 2018; Afshar
et al. 2018). Nevertheless, only a few empirical researches
have been conducted to investigate thermal environment with-
in urban parks (Barradas 1991; Bilgili et al. 2013; Hwang et al.
2015). Barradas (1991) depicted Ta distribution within five
parks in Mexico City with isotherms, and found correlation
between Ta difference and park size. Bilgili et al. (2013)
depicted the Ta distribution in three parks in Turkey, and
found that Ta was correlated with vegetation cover. Hwang
et al. (2015) measured Ta in 10 urban parks in Singapore
and found that shading is the important factor in reducing
temperatures by comparing the characteristics of hot and
cold spots. Further empirical studies are still in need when
considering that a majority of prevalent simulation studies
lack validation (Toparlar et al. 2017), and many questions
remain to be answered. It is yet unclear whether there is
stable temperature or humidity gradient in urban parks.
And the dominant factor on thermal environment in urban
parks has not been identified. In different climate zones, the
above results may also be inconsistent and in need of fur-
ther research.

Beijing is a megacity with a temperate climate that has
undergone rapid urbanization in the last few decades. The
total population has reached 21.71 million in 2017, and the
proportion of urban population has increased from 73.44%
in 1990 to 86.45% in 2017 (NBSC 2018). Such vast urban-
ization has exacerbated UHI effect in Beijing (Liu et al.
2007; Peng et al. 2016). Urban parks may provide more
thermally comfortable places for city dwellers especially
in hot summers (Hami et al. 2019). Better configuration of
landscape elements may enhance urban parks’ ecological
and recreational functions. And better design and manage-
ment of urban parks may reinforce its ability to confront
extreme weather conditions.

Therefore, in order to provide empirical evidence of the
influencing factor on microclimate in an urban park which
can be compared with previous simulation studies, and further
provide insight for designers and park managers, and thus
create a more comfortable environment for citizens, we con-
ducted field measurements within an urban park in Beijing
during daytime and nighttime in both summer and winter.
Specifically, we hope to find answers to the following ques-
tions: (1) How are Ta and relative humidity (Rh) distributed
within an urban park? (2) How do spatial location, radiation
condition and land cover composition affect microclimate in

an urban park? (3) What is the dominant influencing factor on
Ta and Rh at different time? (4) How different types of veg-
etation may contribute to microclimate in an urban park?

Methodology

Site location

Beijing (39°56’N, 116°20′E) is located in the northwest of
North China Plain, with a total area of 16,410 km2. It features
a warm temperate semi humid continental monsoon influ-
enced climate, with long summers and winters and relatively
short springs and autumns. In 2017, the precipitation was
576.2 mm and the annual average air temperature was
14.2 °C (NBSC 2018).

Taking park size, location and composition into consider-
ation, Tiantan Park was selected as the study site. Tiantan
Park, also known as The Temple of Heaven, with a total area
of 198 ha, is located within the 2nd Ring Road and near the
center of Beijing, surrounded by densely built urban environ-
ment. Vegetation in Tiantan Park is exuberant, as its history
may date back to approximately 600 years ago. There are
more than 1100 trees that are over 300 years old (MOTTH
2002). Tiantan Park also features abundant evergreen trees,
which are mainly Juniperus chinensis, Platycladus orientalis
and Pinus tabuliformis. As one of the 11 municipal parks in
Beijing, Tiantan Park serves as an important recreational place
for citizens and surrounding residents.

Another reason that this specific park was chosen is that it
is composed simply of vegetation and impervious surfaces but
no water bodies. Water bodies have strong ability to absorb
radiation energy (Oke 1992). Previous empirical studies have
proved that water bodies have strong impacts on local and
micro scale climate (Hathway and Sharples 2012; Saaroni
and Ziv 2003). Therefore, to avoid the impact of large water
bodies and to fully investigate vegetation’s thermal effect, we
intentionally selected Tiantan Park as the study site.

Measurement of air temperature and relative
humidity

Ta and Rh were measured with Fluke 971 Temperature
Humidity Meter. The accuracy of the device is ±0.5 °C and
± 2.5%, and the resolution is 0.1 °C and 0.1%, meeting the
requirements of ISO 7726 (ISO 1998). The sensor of the de-
vice is surrounded by a porous black shield which may both
provide protection and partly avoid direct exposure to sun-
shine. And to further avoid the influence of direct exposure
to sunshine, we took a sunshade which is covered with black
coating during data collection. Ta and Rhwere collected at the
height of 1.2 m.
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Measurements were taken on three clear and windless days
that had similar weather conditions in summer (July, 2019)
and winter (February, 2019). Survey times were at noon
starting at 13:00, and at night starting at 21:00 in summer
and 20:00 in winter. We intentionally chose a route on the
main path that traveled through both the innermost and outer-
most of the park, and to avoid dramatic weather condition
change during sampling, each sampling process was restricted
to approximately 60 min. Due to the park administration pol-
icy that the core Temple area closes at dusk, making it hard to
travel from the west part to the east, the majority of points
were selected on the west. Measurement started from an open
square near the south entrance (S01) and each two adjacent
sampling points were approximately 100-150m apart. At each
point, Ta and Rh were recorded only after the device had
stabilized. Figure 1 shows the location of all sampling points.

Considering that the measurements at each point were not
simultaneous, at the start and end of each measurement pro-
cess, three Ta and Rh were measured at S01 with 30s interval
to represent the starting and ending time Ta and Rh. Ta and Rh
were presumed to have changed linearly during data sam-
pling, and the rate of Ta and Rh change was used to adjust
all measurements to the starting time of each measurement
process.

Measurement of influencing factors

Numerous factors influence thermal environment. In this
research, we mainly focused on three types of influencing
factors, which are spatial location of sampling points, ra-
diation condition above sampling points and land cover
features around sampling points. Worldview-3 image with
four multi-spectral bands (1.24 m resolution) and 1 pan-
chromatic band (0.31 m resolution) acquired on February
21, 2019 and GF-2 image with four multi-spectral bands
(4 m resolution) and 1 panchromatic band (0.8 m resolu-
tion) acquired on September 5, 2018 were used for visual
interpretation.

Spatial location is represented by the distance from
sampling points to park boundary (DTB) and the distance
from sampling points to park geometric center (DTC).
Park’s boundary was visually interpreted and the geomet-
ric center and all distances were calculated by using Arc
GIS 10.2.

Radiation condition is represented by sky view factor
(SVF) and sunshine duration (SD). Fisheye photographs were
taken with Canon EOS 5D and Sigma 8 mm F3.5 fisheye lens
at each sampling point at the height of 1.2 m in July and
February respectively. SVF and SD was calculated by
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Fig. 1 Location of sampling points within Tiantan Park (The Temple of Heaven)

769Urban Ecosyst (2021) 24:767–778



importing fisheye photos into RayMan v1.2 (Matzarakis et al.
2007), which had been widely used to analyze radiation con-
dition and thermal comfort (He et al. 2015; Lin et al. 2012;
Tan et al. 2013).

Land cover features is represented by percentage (PLAND)
and average weighed mean shape index (AWMSI) of each
land cover type within 25 m, 50 m and 100 m radius around
each sampling point calculated by Fragstats 4.2.1 (McGarigal
and Marks 1995) at class level. Previous research conducted
by Yan et al. (2014a) has proved that land cover composition
20-50 m around the sampling points may best explain Ta in
Beijing. Visual interpretation of imperious surfaces (IS),
grassland (GL), deciduous tree (DT) and evergreen tree (ET)
were conducted in Arc GIS 10.2 based on Worldview-3 and
GF-2 image. There is no permanent bare land in the park.
Shrubs were not identified because it is hardly possible to
distinguish those shrubs under tree canopy through remote
sensed data, and shrubs have limited impact on Ta and Rh
under dense tree coverage (Prévosto et al. 2020). All 4 land
cover types were used for the calculation of landscape metrics
in summer, while 3 were used in winter, for the coverage of
DT was divided into GL and IS. Definition and equation of
landscape metrics are listed in Table 1.

Data analyses

Average Ta and Rh of 3 days were calculated, which further
determined the ranges of Ta and Rh. One-way ANOVA was
performed to compare Ta and Rh of each sampling points,
before which we had already confirmed that they all complied
with normal distribution and rejected Bartlett’s test. R package
Agricoae (Mendiburu 2017) was used to conduct Duncan
multiple comparison at ɑ = 0.05.

For each sampling points, the average Ta and Rh of 3 days
at noon and at night in summer and winter are calculated
respectively. Pearson correlation between average Ta, Rh
and all influencing factors were calculated by using R package
Hmisc (Harrell 2018). Linear regression models were called
for to estimate the trend between average Ta, Rh and correlat-
ed factors. Multiple linear regression models were built under
stepwise algorithm to identify which influencing factor con-
tribute the most to Ta and Rh within an urban park at different
time, before which both dependent and independent variables

were standardized so that the coefficients might effectively
represent the order of importance. To avoid co-linearity
among influencing factors, correlated factors or factors with
similar meanings were removed from one same model.

All data analyses were conducted on R 3.5.3 (R
Development Core Team 2015). Graphics were depicted in
R and further edited in Adobe Illustrator when needed.

Results

Spatial and temporal pattern of air temperature and
relative humidity

The average and range of 3-day-averaged Ta and Rh among
different sampling points are shown in Table 2, and the com-
parison of Ta and Rh are shown in Fig. 2. Significant differ-
ences are detected among Ta at noon in summer and at night
in winter, as shown in Fig. 2, while no significant difference
among Rh at all time. The range of Ta reaches as high as
2.71 °C at noon in summer, and the range of Rh reaches
5.16% at night in summer. Ta at noon in summer and Ta at
night in winter are less evenly distributed. Ta of each sampling
point is significantly different from at least 11 sampling points
at noon in summer, and 15 sampling points at night in winter.
Of all sampling points, the highest average Ta at noon in
summer and winter were measured at S11, which features
high SVF in both summer and winter and located near the
center of Tiantan Park. It is also at S11 that a relatively lower
Ta were detected at night in summer and winter. While no
other sampling points show similar diurnal and nocturnal var-
iation of Ta or Rh.

Table 1 Landscape metrics and calculation equations

Metric Definition Unit Equation

PLAND The percentage of each land cover type. % PLAND ¼ ∑n
j¼1aij
A

AWMSI The sum of the perimeter of each patch divided by the square root of patch area for each land cover type.
AWMSI equals 1 when all patches are circular and increases when patches gain complexity in shape.

– AWMSI ¼ ∑n
j¼1

pij
2

ffiffiffiffiffiffiffi

π*aij
p

� ��

aij
∑n

j¼1aij

� �

�

aij refers to patch area of patch ij (m2 ), pij refers to perimeter of patch ij (m), A refers to the total buffer area (m2 )

Table 2 Average and range of 3-day-averaged Ta and Rh of all
sampling points in Tiantan Park

Ta (°C) Rh (%)

Average Range Average Range

Summer noon 36.82 2.71 44.76 4.81

Summer night 32.71 1.29 57.71 5.16

Winter noon 6.08 1.47 16.91 1.27

Winter night −2.45 2.21 35.37 5.03
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Spatial location of sampling points represented by their
distance to park boundary and distance to park center has an
impact on Ta. Table 3 shows significant Ta gradients at noon
in summer and at night in winter within Tiantan Park. For
every 100 m away from the park boundary, Ta at noon in
summer shall rise 0.3 °C, as shown in Fig. 3a. While at night
in winter, Ta shall drop 0.2 °C for every 100 m away from the
park boundary, as shown in Fig. 3b.

Influence of radiation condition on air temperature
and relative humidity

As Table 4 shows, radiation conditions above each sampling
points are significantly correlated with daytime and nighttime
Ta and Rh in summer and winter. Considering that sunshine
duration and SVF are correlated parameters in both summer
and winter (ρsummer = 0.901 (p < 0.01), ρwinter = 0.838

(p < 0.01)), and SVF is the parameter that is more closely
related to design, it is selected for building linear models.

Ta at noon in both summer and winter and Ta at night in
summer have a positive linear relationship with SVF, with the
largest gradient at noon in summer, as shown in Fig. 4a-c.
While Rh at noon in both summer and winter and Rh at
night in summer have a negative linear relationship with
SVF, with the largest gradient also at noon in summer, as
shown in Fig. 4d-f. Ta and Rh at noon in summer are well
explained by SVF, with R2 as high as 0.861 and 0.606.

Influence of land cover features on air temperature
and relative humidity

Thermal effects of different land cover types are different. As
shown in Tables 5 and 6, among 3 different buffer scales, land
cover features within 25 m may best explain Ta and Rh line-
arly, for their correlation coefficients are generally larger.
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Fig. 2 Comparison of air temperature and relative humidity within Tiantan Park (Average with Standard deviation. Groups with identical letters are not
significantly different at ɑ = 0.05)

Table 3 Correlation coefficients between air temperature, relative humidity and spatial location of sampling points

Summer Winter

Rh at noon Ta at noon Rh at night Ta at night Rh at noon Ta at noon Rh at night Ta at night

DTB −0.35 0.44* −0.10 0.17 −0.01 0.09 0.18 −0.45*
DTC 0.28 −0.44* 0.08 −0.06 −0.10 0.09 0.07 0.39

*p < 0.05(two-tail); **p < 0.01(two-tail). Rh relative humidity, Ta air temperature, DTB distance to park boundary, DTC distance to park geometric
center. Same below
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Higher percentage of IS and GL may both induce higher Ta
at noon in summer. For 10% higher IS or GL coverage, Ta at
noon in summer shall rise 0.03 °C (Fig. 5a-b). While at night in
winter, IS andGL have opposite effects, with higher percentage
of IS inducing higher Ta, and higher percentage of GL inducing
lower Ta. At noon in summer, DT is the only element that may
significantly reduce Ta and increase Rh. For 10% higher DT
coverage, Ta at noon in summer shall drop 0.02 °C (Fig. 5c).
ET, except for increasing Rh at noon in winter, barely have
effects on micro scale climate within park area.

As shown in Table 6, more complexed IS may give rise to
Ta at noon in summer and winter, while decrease Ta at night
in winter. However, patch shape of all types of vegetation
coverage is found have no impacts on microclimate within
Tiantan park.

Dominant factor on air temperature and relative
humidity

Table 7 demonstrates the multiple regression models between
standardized Ta, Rh and influencing factors. Reliable models
are built for daytime Ta in summer and winter, and nighttime
Ta in winter.

Dominant influencing factor on Ta varies among time.
Radiation condition represented by SVF has dominant impact
on Ta during daytime. Ta at noon in summer is well explained
by SVF and DTB (R2 = 0.90), and SVF plays a more impor-
tant role compared with DTB, with standardized coefficient

0.872. Ta at night in winter can be explained by SVF and
percentage of GL and ET, also with SVF as the dominant
influencing factor (β = 0.723). While during winter nighttime,
land cover feature plays the most prominent role, with the
standardized coefficient of percentage of pavement and build-
ing as high as 0.601.

Discussion

Air temperature and relative humidity variance within
urban parks

Results of this research suggest that strong variance of Ta and
Rh exists within Tiantan park. 1.29–2.71 °C Ta range and
1.27–5.16% Rh range at different time are in consistent with
previous studies conducted in multiple cities (Cohen et al.
2012; Hwang et al. 2015; Bilgili et al. 2013). Significant Ta
differences while insignificant Rh differences are detected
within Tiantan Park (Fig. 2).

The different thermal properties of vegetation and impe-
rious surfaces are the cause of microclimate difference in
urban parks (Taha 1997). During daytime, imperious sur-
faces take in solar radiation and releases long-wave radia-
tion which directly warm the air up, while vegetation may
reduce the solar radiation that reaches the ground and con-
sume energy through evapotranspiration (Grimmond and
Oke 1991; Oke 1992).

Distance to park boundary(m)

A
ir

 t
em

p
er

at
u

re
 a

t 
n

ig
h

t 
in

 w
in

te
r(

℃
) y = -0.002x - 1.997

R2 = 0.200 p = 0.025

y = 0.003x + 36.183

R2 = 0.196 p = 0.027

0 100 200 300 400 500

-5
-4

-3
-2

-1
0

0 100 200 300 400 500

3
4

3
5

3
6

3
7

3
8

3
9

4
0

Distance to park boundary(m)

(a) (b)

A
ir

 t
em

p
er

at
u

re
 a

t 
n

o
o

n
 i

n
 s

u
m

m
er

(℃
)Fig. 3 Linear model with Ta as

dependent variables and spatial
location as independent variables

Table 4 Correlation coefficients between air temperature, relative humidity and spatial location of sampling points

Summer Winter

Rh at noon Ta at noon Rh at night Ta at night Rh at noon Ta at noon Rh at night Ta at night

SVF −0.78** 0.93** −0.47* 0.49* −0.43* 0.51* 0.34 −0.28
SD −0.83** 0.87** −0.51** 0.50* −0.46* 0.57** 0.49* −0.40*

*p < 0.05(two-tail); **p < 0.01(two-tail). SVF sky view factor, SD sunshine duration
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More diversified Ta was observed during summer noon
than night (Fig. 2). This complies with what Yan and Dong
(2015) have also observed in Beijing that significant dif-
ference exists during summer daytime but not nighttime
among woodland, grassland, paved area and water area.
Vegetation was observed to have a mild warming effect
at night for tree canopy may hinder long-wave radiation

loss and affect ventilation (Jonsson 2004; Potchter et al.
2006; Chang and Li 2014), while Ta drops more rapidly
above impervious surfaces and grassland, and thus
resulting in a smaller Ta difference at night.

Based on the knowledge that vegetation may cool and hu-
midify the environment while man-made surfaces have con-
verse effects, one may draw the conclusion that the closer to
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Fig. 4 Linear models with Ta and Rh as dependent variables and radiation condition as independent variables

Table 5 Correlation coefficients among PLAND of different land cover types, air temperature and relative humidity

Summer Winter

Rh at noon Ta at noon Rh at night Ta at night Rh at noon Ta at noon Rh at night Ta at night

IS 25 m −0.67 ** 0.65 ** −0.68 ** 0.66 ** −0.03 −0.33 −0.62 ** 0.51 **

50 m −0.59 ** 0.68 ** −0.66 ** 0.64 ** −0.04 −0.18 −0.60 ** 0.35

100 m −0.49 * 0.40 * −0.54 ** 0.49 * 0.06 −0.24 −0.64 ** 0.51 **

GL 25 m −0.25 0.48 * 0.16 −0.16 −0.46 * 0.52 ** 0.75 ** −0.62 **
50 m −0.24 0.47 * 0.28 −0.22 −0.42 * 0.43 * 0.65 ** −0.49 *
100 m −0.13 0.36 0.27 −0.16 −0.36 0.41 * 0.61 ** −0.53 **

DT 25 m 0.62 ** −0.65 ** 0.39 −0.32 – – – –

50 m 0.53 ** −0.52 ** 0.22 −0.15 – – – –

100 m 0.44 * −0.40 * 0.22 −0.15 – – – –

ET 25 m −0.01 −0.10 −0.01 −0.06 0.58 ** −0.29 −0.26 0.23

50 m 0.03 −0.26 0.00 −0.09 0.45 * −0.30 −0.21 0.23

100 m 0.01 −0.15 −0.07 −0.03 0.34 −0.28 −0.22 0.22

*p < 0.05(two-tail); **p < 0.01(two-tail).Rh relative humidity, Ta air temperature. IS imperious surfaces,GL grassland,DT deciduous tree, ET evergreen
tree. Same below
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the park center, the lower Ta and the higher Rhwill it be. Field
measurement conducted by Barradas (1991) also depicted
such gradients within urban parks. This is also in consistent
with the widely-proved fact that urban parks are cold islands
in cities, featuring lower Ta compared with its vicinity area
(Bowler et al. 2010; Saaroni et al. 2018). However, Ta gradi-
ents at noon in summer in Tiantan Park does not comply with
such conclusion, and Ta get higher as it gets closer to park
center (Fig. 3a, Table 7 β = 0.215). One possible explanation
is that park’s landscape elements composition largely influ-
enced the Ta gradients. The Ta map generated by Kriging
method by Bilgili et al. (2013) also showed strong relevance
to land composition. In this specific case of Tiantan Park, it
may be attributed to the large area of impervious surfaces
located at the park center, which counteracts the cooling ef-
fects of vegetation.

Vegetation’s contribution on microclimate and
implications for planting design

In an urban park as Tiantan Park that does not contain any
water body, microclimate effects are mostly provided by veg-
etation through shading and evapotranspiration (Oke 1992;
Taha et al. 1991). In this research, tree’s shading effect is
examined by radiation condition including SVF and SD, and
is found to have the greatest contribution on reducing Ta dur-
ing daytime (Table 7). Trees may reduce radiation absorbed
by ground and therefore reduce long-wave radiation emission
that may heat up the air (Dimoudi and Nikolopoulou 2003).
Empirical researches widely prove that tree’s shading have
stable cooling effects in hot seasons in temperate, sub-
tropical and tropical region (Ali and Patnaik 2019; Cohen
et al. 2012; Hwang et al. 2015; Lin et al. 2013). Simulation

Table 6 Correlation coefficients among AWMSI of different land cover types, air temperature and relative humidity

Summer Winter

Rh at noon Ta at noon Rh at night Ta at night Rh at noon Ta at noon Rh at night Ta at night

IS 25 m −0.32 0.55 ** 0.04 −0.03 −0.51 ** 0.67 ** 0.54 ** −0.74 **
50 m −0.33 0.48 * 0.06 −0.09 −0.48 * 0.31 0.36 −0.61 **
100 m −0.25 0.49 * 0.00 −0.06 −0.45 * 0.35 0.43 * −0.61 **

GL 25 m 0.19 −0.09 0.25 −0.20 −0.14 0.39 0.19 −0.32
50 m 0.28 −0.19 0.34 −0.35 −0.24 0.28 0.24 −0.37
100 m 0.21 −0.08 0.14 −0.11 −0.11 0.15 0.25 −0.37

DT 25 m 0.36 −0.27 0.31 −0.16 – – – –

50 m 0.29 −0.22 0.14 0.01 – – – –

100 m 0.14 −0.08 0.16 −0.01 – – – –

ET 25 m 0.19 −0.23 −0.12 0.08 0.25 −0.28 −0.19 0.11

50 m 0.08 −0.13 −0.28 0.28 0.15 −0.21 −0.08 0.15

100 m 0.16 −0.24 −0.09 0.13 0.36 −0.30 0.01 0.08

*p < 0.05(two-tail); **p < 0.01(two-tail)
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Fig. 5 Linear model with Ta as dependent variables and PLAND as independent variables
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and modelling studies also believe that tree’s shading effect
outweighs evapotranspiration on regulating microclimate
(Manickathan et al. 2018), and shading is the most promising
way to reduce heat load (Brown et al. 2015).

SVF is chosen for building linear models rather than SD,
because SVF is more intuitive for landscape design. However,
SVF is a geometry factor that cannot explicitly depict energy
exchange, especially at mid to high latitude locations, where
solar elevation angle may largely affect the radiation condi-
tion. While SD is a factor that is directly related to energy
exchange. This may give explanation to our results that SD
is generally better correlated with Ta and Rh than SVF
(Table 4).

Trees cooling effect through shading is a double-edged
sword, for it can enhance thermal environment in hot seasons
while deteriorate it during cold times in a temperate climate
(Cohen et al. 2012; Afshar et al. 2018). In winter, highly
shaded areas endure much longer cold discomfort (He et al.
2015), while people generally desire more sunlight exposure
(Xu et al. 2018). In order to enhance thermal comfort in win-
ter, besides planting more deciduous trees to avoid winter
shading, it is also crucial to select the best planting location.
Several studies pointed out that SVF90–270, which refers to
SVF for the southern half of the upper hemisphere, is more
closely related to direct solar radiation (Holst andMayer 2011;
Lee et al. 2013), and hence is more closely related to thermal
comfort. It can be inferred that avoid planting evergreen trees
directly to the south of travel route or squares may contribute
to winter thermal comfort.

Different vegetation types also play different roles in reg-
ulating microclimate. Trees generally have the most pro-
nounced effects, while turf or lawn has the least contribution
to regulating Ta and Rh (Cheung and Jim 2019). It is
reaffirmed that GL may increase Ta during daytime in sum-
mer and winter (Table 5), indicating thermally discomfortable
in summer while the opposite in winter, as what Zhang et al.

(2020) also observed. Results also indicate that deciduous
trees may reduce Ta and increase Rh at noon in summer, while
evergreen trees barely have any effects (Table 5). This may be
attributed to the fact that the dominant evergreen tree species
in Tiantan Park are cone-shaped conifers, such as Juniperus
chinensis and Platycladus orientalis, which can barely cast
any shade. Milošević et al. (2017) also found that cone-
shaped trees have a weaker microclimate effect than sphere-
shape trees through computer modelling. However, leaves of
conifers are reported to have lower surface temperature and
better cooling effects through evapotranspiration than decidu-
ous trees (Leuzinger et al. 2010; Leuzinger and Körner 2007;
Rana et al. 2020). This evidence may further prove that tree’s
shading outweighs evapotranspiration to provide better
cooling effects. Additionally, we found that evergreen trees
have a significant humidifying effect in winter, a phenomenon
that is also found in Afshar et al. (2018) through numerical
simulation. However, considering that people are less sensi-
tive to RH in winter (Xu et al. 2018), the impact of such
humidifying effect on thermal perception still awaits further
investigation. Results of our work may provide empirical ev-
idence for the microclimate effects of different vegetation
types.

The configuration of different landscape elements including
their proportion and shape is of great concern for designers.
Enhancing vegetation coverage is a widely acknowledged
method to enhance parks’ thermal performance (Chang and
Li 2014; Cheung and Jim 2019; Coseo and Larsen 2014), while
it remains unclear how the shape of vegetation coverage affects
its cooling and humidifying effects. We found that the shape of
vegetation coverage has no impact on Ta or Rh (Table 6).
However, studies using simulation method and remotely
sensed data suggest that the shape of vegetation is linked with
its thermal performance. Sodoudi et al. (2018) proves that belt-
shaped tree coverage may provide best microclimate effects
through simulation, and Yang et al. (2020) believes that

Table 7 Multiple regression
results with air temperature as
dependent variables

Ta at noon in summer Ta at noon in winter Ta at night in winter

β p β p β p

Spatial location DTB 0.215 0.005** – – −0.282 0.002**

Radiation condition SVF 0.872 0.000** 0.723 0.002** −0.528 0.079

Land cover PLANDIS25 – – – – 0.601 0.001**

PLANDGL25 – – 0.694 0.001** – –

PLANDET25 – – 0.594 0.022* – –

R2 0.905 0.552 0.580

Adjusted R2 0.899 0.488 0.521

p <0.001** 0.001** <0.001**

*p < 0.05; **p < 0.01. β Standardized coefficient. PLANDIS25 Percentage of imperious surfaces within 25 m
buffer zone, PLANDGL25 Percentage of grassland within 25 m buffer zone, PLANDET25 Percentage of evergreen
tree within 25 m buffer zone
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compact shape tree coverage may best regulate land surface
temperature. How the shape of vegetation may affect Ta and
Rh still requires further investment through empirical studies.

Conclusion

In this research, we took Tiantan Park in Beijing as a specimen
and investigated Ta and Rh distribution within this park and
related parameters through field measurements. Significant Ta
variance and gradients were detected. Spatial location of, ra-
diation condition above and land cover characteristics around
each sampling points were found correlated with microcli-
mate. Among all parameters, radiation condition is the domi-
nant influencing factor on daytime Ta, while land cover char-
acteristics is the dominant influencing factor on nighttime Ta
in winter. Various microclimate effects are found among dif-
ferent vegetation types. Deciduous trees have a significant
cooling and humidifying effect at noon in summer. While
evergreen trees have little effects in summer, but a humidify-
ing effect in winter. Grassland are found to increase daytime
Ta in both summer and winter. Some of the above results are
in consistent with previous simulation studies and mutual con-
clusions can be get. While the effects of the shape of different
vegetation types remain unclear, and we found that a more
compact IS may lead to lower daytime Ta. It can be inferred
that besides enhancing vegetation coverage, less complex IS
may lead to a more thermally comfort environment in sum-
mer. Choosing deciduous trees over evergreen ones and avoid
planting evergreen trees directly to the south of where people
tend to stay may potentially enhance thermal comfort in parks
in winter.
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