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Supplementary Materials 

Appendix A Basic information of reviewed papers 

Table A1 Basic information of reviewed papers 

Citation 
Geographical range1 Temporal range Temperature indicator UGS classification and identification 

Location Climate zone Year span Sp2 Su2 Au2 Wi2 Type Data Source Spatial Range3 UGS definition Data Source4 Detailed Classification5 

 (Amani-Beni et al., 2019) China - Beijing Dwa [M] 15y  √   LST Landsat Local neighborhood LC [F]SPOT No 

 (An et al., 2022) China - Beijing Dwa [S]  √   LST Landsat Central built-up area LC [F]GF T/S/G 

 (Asgarian et al., 2014) Iran - Isfahan BWk [S] √    LST Landsat Central built-up area LC [C]Landsat No 

 (Athukorala & Murayama, 2020) Ghana - Accra Aw [M] 14y √    LST Landsat Metropolitan area LC [C]Landsat T/G 

 (Athukorala & Murayama, 2021) Egypt - Cario BWh [M] 20y  √   LST MODIS Metropolitan area LC [C]Landsat No 

 (Bao et al., 2016) China - Baotou BSk [M] 15y  √   LST Landsat Central built-up area LU [C]Landsat No 

 (Bartesaghi-Koc et al., 2020) Australia - Sydney Cfa [S]  √  √ LST Aerial Scanner Local neighborhood LC [C]LiDAR T/S/G 

 (Bera et al., 2022) India - Kolkata Aw [S] √ √ √ √ LST Landsat Central built-up area LC [F]GF No 

 (Cai et al., 2022) China - Fuzhou Cfa [M]10y  √   LST Landsat Central built-up area LC [C]Landsat No 

 (Cao et al., 2010) Japan - Nagoya Cfa [M] 5y √ √ √  LST ASTER Central built-up area LU [F]IKONOS T/S/G 

 (Chakraborti et al., 2019) India - Hyderabad BSh [M] 13y   √  LST Landsat City boundary LC [C]Landsat No 

 (Chen et al., 2014a) China - Beijing Dwa [S]  √   LST Landsat Central built-up area LC [F]QuickBird No 

 (Chen et al., 2014b) China - Beijing Dwa [S] √ √ √ √ LST Landsat Central built-up area LC [F]QuickBird T/S/G 

 (D. Chen et al., 2022) China - Urumqi BWk [S]  √   LST Landsat Central built-up area LC [F]PlanetScope No 

 (J. Chen, P. Du, et al., 2022) China – Nanjing Cfa [S] √    LST ASTER Central built-up area LC [F]IKONOS T only 

 (J. Chen, W. Zhan, et al., 2022) China - Nanjing Cfa [S] √ √ √ √ LST Landsat Central built-up area LC [F]IKONOS T only 

 (Chen et al., 2020) China - Nanjing Cfa [S] √    LST ASTER Central built-up area LC [F]WorldView T only 

 (J. Chen et al., 2021) China - Nanjing Cfa [S] √    LST ASTER Central built-up area LC [F]IKONOS, LiDAR T/G 

 (X. Chen et al., 2022) China - Guiyang Cwa [S] √ √ √ √ LST Landsat Central built-up area LC [F]Google earth No 

 (X. Chen et al., 2021) China - Guiyang Cwa [S]  √   LST Landsat Central built-up area LU [F]Pleiades No 

 (Cheng et al., 2015) China - Shanghai Cfa [S]  √   LST Landsat Central built-up area LU [F]Aerial Image No 

 (Connors et al., 2012) US - Phoenix BWh [S]  √   LST ASTER City boundary LC [F]QuickBird T/G 

 (Das et al., 2020) India - Jaipur, Guwahati BSh, Cwa [M] 28y   √ √ LST Landsat City boundary LC [C]Landsat No 

 (Du et al., 2022) China - Xi’an BSk [S]  √   LST Landsat Central built-up area LU [F]Not specified No 

 (Du et al., 2017) China - Shanghai Cfa [S]  √   LST Landsat Central built-up area LU [F]Google earth T/G 

 (Du et al., 2021) China - Shanghai Cfa [S]  √   AT Field Monitored Central built-up area LU [F]Not specified No 

 (Du et al., 2016) China - Zhuhai Cwa [S]   √  LST Landsat Central built-up area LC [F]QuickBird T/G 

 (Dugord et al., 2014) Germany - Berlin Dfb [S]  √   LST Landsat City boundary LU [F]Governmental data T/G 

 (Ekwe et al., 2020) Nigeria - Port Harcourt Am [S]    √ LST Landsat Local neighborhood LU [F]Google earth No 

 (Estoque et al., 2017) 

Thailand - Bangkok, 

Indonesia - Jakarta, 

Philippines - Manila 

Aw,  

Am,  

Aw 

[S] √  √  LST Landsat Metropolitan area LC [C]Landsat No 

 (Fan et al., 2019) 

India - Mumbai, China -

Hong Kong, Kaohsiung, 

Tainan, Singapore, 

Malaysia - Kuala Lumpur, 

Indonesia - Jakarta 

Am, Cwa, Aw, Aw, 

Af, Af, Am 
[S]  √   LST Landsat City boundary LC [C]Landsat T only 

 (Feng et al., 2020) China - Nanjing Cfa [M] 8y √ √  √ 
AT / 

LST 
Landsat, Meteorology Station City boundary LC [C]Landsat No 

 (Feng & Myint, 2016) China - Beijing Dwa [S]  √   LST ASTER Central built-up area LC [F]QuickBird No 
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Citation 
Geographical range1 Temporal range Temperature indicator UGS classification and identification 

Location Climate zone Year span Sp2 Su2 Au2 Wi2 Type Data Source Spatial Range3 UGS definition Data Source4 Detailed Classification5 

 (Feyisa et al., 2014) Ethiopia - Addis Ababa Cwb [S]   √  
AT / 

LST 
Landsat, Field Measured Central built-up area LU [C]ASTER T only 

 (Gage & Cooper, 2017) US - Aurora BSk [S]  √   LST Landsat  LC [F]Publication: 1m T/G 

 (Galletti et al., 2019) US - Phoenix BWh [S]  √   LST ASTER Central built-up area LC [F]NAIP T/G 

 (Gao et al., 2022) 

US - Austin, Baltimore, 

Chicago, Los Angeles, 

Portland 

Cfa, Cfa, Csa, Csb [M]4y mean  √   LST Landsat Central built-up area LU [F]NA No 

 (Greene & Kedron, 2018) Canada - Toronto Dfa [S]  √   LST Landsat City boundary LC [F]QuickBird T only 

 (A. Guo et al., 2020) China - Dalian Dwa [M] 11y   √  LST Landsat Central built-up area LU [C]Landsat No 

 (G. Guo et al., 2020) China - Guangzhou Cwa [S]  √ √  LST Landsat Central built-up area LC [F]Aerial Image No 

 (Guo et al., 2021) 
China - Guangzhou, 

Shenzhen 
Cwa [S]  √   LST Landsat Central built-up area LC [F]Aerial Image No 

 (Guo et al., 2019) 

China - Guangzhou, 

Foshan, Dongguan, 

Shenzhen 

Cwa, Cfa, Cwa, 

Cwa 
[S]  √  √ LST Landsat Central built-up area LC [F]Aerial Image No 

 (He et al., 2021) US - Baltimore, Boston Cfa, Dfa [M] 5y  √   LST MODIS Metropolitan area LC [C]NLCD T only 

 (Hou & Estoque, 2020) China - Hangzhou Cfa [S]  √   LST Landsat Metropolitan area LC [C]Landsat T/G 

 (Hu et al., 2021) China - Beijing Dwa [S]  √   LST Landsat Local neighborhood LC [F]GF T/G 

 (Huang et al., 2018) China - Harbin Dwa [M] 9y  √   LST Landsat Central built-up area LU [C]Landsat No 

 (Huang et al., 2022) China – Xi’an BSk [M]20y  √   LST Landsat Central built-up area LU [F]NA No 

 (Huang & Wang, 2019) China - Wuhan Cfa [S] √ √ √ √ LST Landsat Central built-up area LC [F]ZY-3 T/G 

 (Jaganmohan et al., 2016) Germany - Lipzig Cfb [S]  √   AT Field Measured Central built-up area LU [F]Not specified T only 

 (Kamarianakis et al., 2017) US - Phoenix Bwh [S]  √   AT Meteorology Station Metropolitan area LC [F]NAIP T/G 

 (Karunaratne et al., 2022) Nepal - Kathmandu Cwa [M]20y     LST Landsat Metropolitan area LC [C]Landsat T/G 

 (Ke et al., 2021) China - Wuhan Cfa [M] 3y  √   LST Landsat Central built-up area LC [C]FROM-GLC10 No 

 (Kim et al., 2016) US - Austin Cfa [S]  √   LST Landsat Central built-up area LC [F]Aerial Image T/G 

 (Kong, Yin, James, et al., 2014) China - Nanjing Cfa [S]  √   LST Landsat Central built-up area LC [F]IKONOS T/G 

 (Kong, Yin, Wang, et al., 2014) China - Nanjing Cfa [S]  √   LST Landsat Central built-up area LC [F]IKONOS T/G 

 (Kowe et al., 2021) Zimbabwe - Harare Cwb [M] 23y  √   LST ASTER, Landsat City boundary LC 
[C]ASTER, LANDSAT, 

Sentinel 
No 

 (Lemoine-Rodríguez et al., 2022) Mexico - Xalapa Cfb [S] √    LST Landsat Central built-up area LC [F]SPOT T/G 

 (Li et al., 2017) US - Phoenix BWh [S]  √   LST MASTER Central built-up area LC [F]NAIP T/G 

 (B. Li et al., 2020) China - Zhengzhou Cwa [S] √    LST Landsat Central built-up area LU [F]Google earth No 

 (Li et al., 2018) China - Xi'an BSk [M] 25y  √   LST Landsat Central built-up area LC [C]Landsat No 

 (Li et al., 2022) 

Bangladesh - Dhaka, 

India - Kolkata, Thailand 

- Bangkok  

Aw  [M] 20y √   √ LST Landsat Central built-up area LC [C]Landsat No 

 (Li et al., 2011) China - Shanghai Cfa [S] √ √   LST Landsat Central built-up area LU [F]Aerial Image No 

 (T. Li et al., 2020) China - Beijing Dwa [S]  √   LST Landsat Central built-up area LC [F]IKONOS T/G 

 (Li et al., 2013) China - Beijing Dwa [S]   √  LST Landsat Central built-up area LC 
[F+C]QuickBird, SPOT, 

LANDSAT 
No 

 (Li et al., 2012) China - Beijing Dwa [S]   √  LST Landsat Central built-up area LC [F]SPOT No 

 (T. Li et al., 2021) China - Beijing Dwa [S] √ √ √ √ LST Landsat Central built-up area LC [F]IKONOS T/G 

 (Y. Li et al., 2020) China - Beijing Dwa [S]  √  √ AT Field Measured Local neighborhood LC [F]GF T/G 

 (Y. Li et al., 2021) China - Beijing Dwa [S]  √   AT Field Measured Central built-up area LU [F]GF No 
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Citation 
Geographical range1 Temporal range Temperature indicator UGS classification and identification 

Location Climate zone Year span Sp2 Su2 Au2 Wi2 Type Data Source Spatial Range3 UGS definition Data Source4 Detailed Classification5 

 (Li et al., 2019) China - Shanghai Cfa [S]  √   LST Landsat Central built-up area LC [F]Governmental data No 

 (W. Liu et al., 2022) China - Beijing Dwa [S]   √  LST Landsat Central built-up area LC [C]FROM-GLC10 No 

 (Liu et al., 2021) China - Xuchang Cwa [S]  √   LST Landsat Central built-up area LU [C]Landsat No 

 (K. Liu et al., 2022) China - Shijiazhuang BSk [S]  √   LST 
Aerial Scanner, Landsat, 

MODIS 
Central built-up area LC [F]Aerial Image T/G 

 (Liu et al., 2016) China - Beijing Dwa [S] √ √ √ √ LST Landsat Central built-up area LC [F]GF T/G 

 (H. Liu & Q. Weng, 2009) US - Indianapolis Dfa [M] 6y √ √ √ √ LST Aster Metropolitan area LC [C]ASTER T/G 

 (S. Liu et al., 2022) China - Fuzhou Cfa [M] 16y √ √   LST Landsat Central built-up area LC [C]Landsat No 

 (Wenrui Liu et al., 2022) China - Beijing Dwa [S]   √  LST Landsat Central built-up area LC [C]Landsat + ESA No 

 (Liu et al., 2018a) China - Shenzhen Cwa [M] 28y  √ √ √ LST Landsat Central built-up area LC [C]Landsat No 

 (Liu et al., 2018b) China - Shenzhen Cwa [M] 28y  √ √ √ LST Landsat Central built-up area LC [C]Landsat No 

 (Lu et al., 2012) China - Chongqing Cfa [S]  √   AT Field Measured Local neighborhood LU [F]Not specified No 

 (Lu et al., 2020) China - Xi'an BSk [M] 25y √    LST Landsat Central built-up area LC [C]Landsat No 

 (Lyu et al., 2023) China - Yinchuan BWk [S]  √   LST Landsat Central built-up area LC [C]Sentinel No 

 (Ma & Peng, 2022) China - Kunming Cwb [M] 28y √    LST Landsat City boundary LC [C]Landsat No 

 (Ma et al., 2021) China - Xi'an BSk [M] 9y  √   LST Landsat Central built-up area LC [C]Landsat T/G 

 (Maimaitiyiming et al., 2014) China - Aksu BWk [S]  √   LST Landsat Central built-up area LC [C]Landsat No 

 (Masoudi & Tan, 2019) Singapore - Singapore Af [M] 42y     LST Landsat City boundary LC [C]Landsat No 

 (Masoudi et al., 2021) Singapore - Singapore Af [M] 10y    √ LST Landsat City boundary LC [C]Landsat, Governmental data No 

 (Masoudi et al., 2019) 

Malaysia - Kuala Lumpur, 

Indonesia - Jakarta,  

China - Hong Kong,  

Singapore - Singapore 

Af,  

Am,  

Cwa,  

Af 

[S]     LST Landsat City boundary LC [C]Landsat No 

 (Naeem et al., 2018) 
China - Beijing, 

Pakistan - Islamabad 
Dwa, Cwa [S]   √  LST Landsat Central built-up area LC [F]GF No 

 (Pang et al., 2022) 
China - Beijing, Tianjin, 

Xi'an, Zhengzhou 

Dwa, Dwa, BSk, 

Cwa 
[S]  √   LST Landsat Central built-up area LU [F]Google earth No 

 (Park & Cho, 2016) Koear - Ulsan Cfa [S]  √   LST Landsat Central built-up area LU [C]Landsat No 

 (Peng et al., 2021) China - Shenzhen Cwa [S]   √  LST Landsat Central built-up area LU [F]Governmental data No 

 (Peng et al., 2018) China - Shenzhen Cwa [S] √    LST Landsat Central built-up area LC [F]Governmental data T/G 

 (Peng et al., 2016) China - Beijing Dwa [S] √ √ √ √ LST Landsat City boundary LC [C]Landsat No 

 (Pramanik & Punia, 2019) India - Delhi BSh [S] √    LST Landsat Central built-up area LC [C]Sentinel T/G 

 (Qian et al., 2018) China - Beijing Dwa [S]  √  √ AT Field Monitored Local neighborhood LC [F]Google earth No 

 (Qiu & Jia, 2020) China - Beijing Dwa [S]  √    Landsat Central built-up area LU [F]Worldview no 

 (Rahimi et al., 2021) Iran - Tehran BSk [S]  √   LST Landsat Central built-up area LC [C]Landsat No 

 (Rakoto et al., 2021) Australia - Melbourne Cfb [S]  √   LST Landsat Central built-up area LC [F]LiDAR DC 

 (Ren et al., 2013) China - Changchun Dwa [S]  √ √  LST Landsat Central built-up area LU [F]SPOT No 

 (Ren et al., 2014) China - Changchun Dwa [S]  √   LST Landsat Central built-up area LC [F]SPOT No 

 (Rhee et al., 2014) US - Denver BSk [S] √ √ √  LST Landsat Local neighborhood LC [F]LiDAR T/G 

 (Rouhi et al., 2018) Iran - Sari Csa [S]  √   LST Landsat Metropolitan area LC [C]Landsat No 

 (Shah et al., 2021) India - Berrrngaluru Aw [S] √    LST Landsat Central built-up area LU [C]Landsat No 

 (Shaker et al., 2019) US - New York Dfa [S]   √  AT Meteorology Station Central built-up area LC [F]NYCPR: 0.914m T/G 

 (Shi & Zhao, 2022) China - Xi’an BSk [S]  √   LST Landsat Central built-up area  [C]Sentinel T/G 

 (Shih, 2017) China - Taipei Cfa [S]  √   LST Landsat Central built-up area LC [C]Landsat No 

 (Shih, 2016) China - Taipei Cfa [S]  √   LST Landsat Central built-up area LC [C]Landsat No 
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Citation 
Geographical range1 Temporal range Temperature indicator UGS classification and identification 

Location Climate zone Year span Sp2 Su2 Au2 Wi2 Type Data Source Spatial Range3 UGS definition Data Source4 Detailed Classification5 

 (Simwanda et al., 2019) 

Nigeria - Lagos, Kenya - 

Nairobi, Ethiopia - Addis 

Ababa, Zambia - Lusaka 

Aw, Cfb, Cwb, Cwa [S]  √  √ LST Landsat Metropolitan area LC [C]Landsat No 

 (Song et al., 2020) China - Hangzhou Cfa [S] √ √ √ √ LST Landsat Metropolitan area LC [F]SPOT T/G 

 (Xiang Sun et al., 2020) China - Nanjing Cfa [M] 8y  √   LST Landsat Central built-up area LU [F]Google earth No 

 (Sun et al., 2021) China – Shanghai Cfa [S]  √  √ LST Landsat Central built-up area LU [F]Google earth T/G 

 (Sun et al., 2022) China - Chengdu Cfa [M]29y √    LST Landsat Central built-up area LC [C]Landsat T/G 

 (Tan & Li, 2013) China - Beijing Dwa [S]  √   LST Landsat Central built-up area LC [C]Landsat No 

 (X. Tan et al., 2021) China - Nanning Cfa [M] 4y   √  LST Landsat Central built-up area LC [C]Landsat No 

 (Tang et al., 2023) China - Wuhan Cfa [S]  √   LST Landsat Central built-up area LC 
[C]FROM-GLC10 10m, 

EULUC land use 
No 

 (Terfa et al., 2020) Ethiopia - Addis Ababa Cwb [M]22y    √ LST Landsat City boundary LC [C]Landsat No 

 (Vaz Monteiro et al., 2016) UK - London Cfb [S]  √ √  AT Field Monitored Local neighborhood LU [F]Not specified T/G 

 (Wang & Zhou, 2022) China - Beijing Dwa [M] 5y  √   LST MODIS Central built-up area LC [F]SPOT, ALOS T/G 

 (Wang et al., 2023) 

China - Beijing, 

Shenzhen, US - 

Sacramento, Baltimore 

Dwa, Cwa, Csa, Cfa [S]  √   LST Landsat Central built-up area LC [F]Publication: 1m T only 

 (Wang et al., 2020) 
China - Nanjing, Wuhan, 

Chongqing 
Cfa [M]19y  √   LST Landsat Metropolitan area LC [F]Landsat T/G 

 (Wang et al., 2022) China - Shanghai Cfa [S]  √   LST Landsat Central built-up area LU [F]Amap No 

 (Wang et al., 2018) China - Changzhou Cfa [S] √    LST Landsat Central built-up area LU [F]NA No 

 (X. Wang et al., 2021) China - Beijing Dwa [S]  √   LST Landsat Central built-up area LC [F]SPOT T/G 

 (Y. Wang et al., 2021) China - Taiyuan BSk [S]  √   LST Landsat Central built-up area LU [C]Governmental data T/G 

 (Weber et al., 2014) Germany - Lipzig Cfb [S]   √  LST Aerial Scanner City boundary land use*land use [F]Governmental data No 

 (Wen et al., 2011) China - Guangzhou Cwa [S]   √  AT Meteorology Station City boundary LC [C]CBERS No 

 (Wesley & A. Brunsell, 2019) US - Kansas City Dfa [M] 3y  √   LST Landsat Metropolitan area LC [C]NRI No 

 (Wu et al., 2021) China - Shanghai Cfa [S]  √   LST Landsat Central built-up area LU [C]Landsat No 

 (Wu et al., 2014) China - Wuhan Cfa [S]  √   LST HJ-1B City boundary LC [C]HJ-1B No 

 (Q. Wu et al., 2022) China - Beijing Dwa [S]  √   LST Landsat Central built-up area LC [C]FROM-GLC10 T/G 

 (Y. Wu et al., 2022) China - Hangzhou Cfa [M] 20y  √   LST Landsat Metropolitan area LC [C]Landsat T/G 

 (Wu & Zhang, 2018) China - Suzhou Cfa [S] √    LST Landsat Central built-up area LC [C]Landsat No 

 (Xie et al., 2020) China - Shenzhen Cwa [M] 10y  √   LST Landsat City boundary LC [C]Landsat T/G 

 (Xie et al., 2013) China - Shenzhen Cwa [S]   √  LST Landsat City boundary LC [C]Landsat T/G 

 (Xu et al., 2017) China - Beijing Dwa [S]  √   LST Landsat Central built-up area LU [F]QuickBird T/G 

 (Yan et al., 2019) US - Phoenix BWh [S]  √   LST MASTER Local neighborhood LC [F]NAIP T/G 

 (Yan et al., 2021) China - Beijing Dwa [S]  √   LST Landsat Central built-up area LC [F]SPOT No 

 (Yang, He, Wang, et al., 2017) China - Changchun Dwa [S] √ √ √ √ LST Landsat Central built-up area LC [F]GF No 

 (Yang, He, Yu, et al., 2017) China - Changchun Dwa [S] √ √ √  LST Landsat Central built-up area LU [F]GF T/G 

 (C. Yang et al., 2021) China - Changchun Dwa [S]  √   
AT / 

LST 
Landsat, Field Measured Central built-up area LC [F]GF No 

 (Yang et al., 2020) Denmark - Copenhagen Dfb [S] √ √ √ √ LST Landsat Central built-up area LC [F]Governmental data T/G 

 (Yang et al., 2022) China - Fuzhou Cfa [M]3y  √   LST Landsat Central built-up area LC [F]GF T/G 

 (L. Yang et al., 2021) China - Fuzhou Cfa [S] √ √  √ LST Landsat City boundary LC [F]GF No 

 (Yao et al., 2020) China - Beijing Dwa [S] √ √ √ √ LST Landsat Central built-up area LC [F]IKONOS No 
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 (Ye et al., 2021) 

China-Beijing, Tianjin, 

Shanghai,Guangzhou, 

Shenzhen 

Dwa, Dwa, Cwa, 

Cwa 
[M]27y  √   LST Landsat Central built-up area LC [F]IKONOS No 

 (Yin et al., 2019) China - Beijing Dwa [S]   √  LST Landsat Central built-up area LC [F]SPOT T/G 

 (Yu et al., 2020) China - Shanghai Cfa [S]  √   LST Landsat Central built-up area LC [F]ZY-3 No 

 (Yu et al., 2017) China - Fuzhou Cfa [M] 13y  √   LST Landsat Central built-up area LC [F]SPOT T/G 

 (Yuan et al., 2021) China - Xi'an BSk [S]  √   LST Landsat Central built-up area LC [F]GF2 T/G 

 (Zawadzka et al., 2020) 
UK - Milton keynes, 

bedford, luton/dunstable 
Cfb [S]  √   LST Landsat Central built-up area LC [F]Governmental data T/G 

 (Zawadzka et al., 2021) 
UK - Milton keynes, 

bedford, luton/dunstable 
Cfb [S]  √   LST Landsat Central built-up area LC [F]LiDAR T/G 

 (Zeng et al., 2022) China - Shanghai Cfa [S]  √   LST Landsat Central built-up area LC [F]GF2 T/G 

 (H. Zhang et al., 2022) China - Shanghai Cfa [M]7y  √   LST Landsat Local neighborhood LC [F]Governmental data: 1m T/G 

 (L. Zhang et al., 2022) China - Beijing Dwa [S]   √  LST Landsat Central built-up area LC [F]WorldView No 

 (M. Zhang et al., 2022) China - Urumqi BWk [S]  √   LST Landsat Central built-up area LC [F]GF No 

 (Zhang et al., 2009) China - Nanjing Cfa [S]  √   LST Landsat Central built-up area LC [F]IKONOS T/S/G 

 (Y. Zhang et al., 2022) China - Xuzhou Cfa [M]6y √    LST Landsat Central built-up area LC [F]GF No 

 (Zhao et al., 2020) China - Zhengzhou Cwa [M] 15y     LST Landsat City boundary LC [C]Landsat T/G 

 (W. Zhou et al., 2022) 
China - Beijing, Tianjin, 

Shanghai 
Dwa, Dwa, Cfa [S]  √   LST Landsat Central built-up area LC [C]Landsat T/G 

 (G. Zhou et al., 2019) US - Washington DC Cfa [S] √    LST Landsat City boundary OC [C]ASTER No 

 (L. Zhou et al., 2022) China - Xi'an BSk [S]  √   LST Landsat Metropolitan area LC [C]Sentinel No 

 (Zhou & Cao, 2020) China - Shanghai Cfa [S] √ √ √ √ LST Landsat Central built-up area LC [F]SPOT T/G 

 (W. Zhou, F. Cao, et al., 2019) China - Shanghai Cfa [S]  √   LST Landsat Central built-up area LC [F]SPOT T/G 

 (W. Zhou, X. Shen, et al., 2019) China - Nanjing Cfa [S] √    LST Landsat Central built-up area LC [C]Landsat No 

 (Zhou et al., 2011) US - Baltimore Cfa [S]  √   LST Landsat Central built-up area LC [F]LiDAR T/G 

 (Zhou et al., 2017) 
US - Sacramento, 

Baltimore 
Csa, Cfa [S]  √   LST Landsat City boundary LC [F]NAIP T only 

 (Zhu et al., 2021) China - Jinan Dwa [M]3y mean  √   LST Landsat Central built-up area LU [F]GF2 No 

Note: 1 Climate zone classified following world’s current Köppen climate classification. 2 Sp=spring, Su=summer, Au=autumn, Wi=winter. [M] refers to that multiple years’ data were used. [S] refers to that single year data was used. 3 Classified into 4 types, i.e., 

metropolitan area, city boundary, central built-up area, and local neighborhood, by the spatial range taken into consideration of analysis. 4 [C] Coarse resolution data used, [F] Fine resolution data used. 5 T only=tree canopy specified only, T/G=specified tree canopy 

and grassland/cropland coverage, T/S/G=specified tree canopy, shrub coverage, and grassland/cropland coverage, DC=detailed classification.  
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Fig. A1 Reviewed paper amount by (a)country, and (b) Köppen climate zone, (c) published year, and (d) published journals. 
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Appendix B Frequency of landscape metrics used in reviewed papers 

Table B1 2D patch level LMs used in reviewed papers 

Metric 

category 

Landscape metric Calculation# Description# Range Frequency in reviewed papers 

Shape metrics Perimeter-area ratio 

(PARA) 
𝑃𝐴𝑅𝐴 =

𝑝𝑖𝑗

𝐴𝑖𝑗
 

It describes the patch complexity in a 

straightforward way. However, because it is not 

standardized to a certain shape (e.g., a square), 

it is not scale independent, meaning that 

increasing the patch size while not changing the 

patch form will change the ratio. 

PARA > 0 

Increases, without limit, as the 

shape complexity increases. 

15 

 (Asgarian et al., 2014; Bao et al., 2016; Du et al., 2021; Ekwe et al., 2020; Huang et al., 

2018; Huang et al., 2022; W. Liu et al., 2022; Qiu & Jia, 2020; Ren et al., 2013; Shih, 

2016; Vaz Monteiro et al., 2016; Wang et al., 2022; Wang et al., 2018; Yang, He, Wang, 

et al., 2017; Zhang et al., 2009) 

 Shape index (SHAPE) 
𝑆𝐻𝐴𝑃𝐸 =

𝑝𝑖𝑗

2√𝜋𝐴𝑖𝑗
   (a) 

𝑆𝐻𝐴𝑃𝐸 =
𝑝𝑖𝑗

4√𝐴𝑖𝑗
    (b) 

It describes the patch complexity by comparing the 

shape to a circle (a) or a square (b). It corrects 

the size problems of PARA and offers a simple 

and straightforward way of describing shape 

complexity. 

SHAPE≥1 

Increases, without limit, as the 

shape complexity increases. 

SHAPE = 1 when the patch is 

circle (a) or square (b). 

34 

16 papers used equation (a) 

 (Cao et al., 2010; Chen et al., 2014b; Du et al., 2017; Fan et al., 2019; Li et al., 2022; 

Park & Cho, 2016; Shah et al., 2021; Shih, 2017; X. Sun et al., 2020; Tan & Li, 

2013; X. Y. Tan et al., 2021; Yan et al., 2021; Yang, He, Yu, et al., 2017; Yang et al., 

2020; Yu et al., 2017; W. Zhou, X. Shen, et al., 2019) 

10 papers used equation (b) 

 (X. Chen et al., 2021; Y. Li et al., 2021; Wenrui Liu et al., 2022; Lu et al., 2012; Pang 

et al., 2022; Xu et al., 2017; Yang, He, Wang, et al., 2017; Zhang et al., 2009; W. 

Zhou et al., 2022; Zhu et al., 2021) 

7 papers didn’t specify 

 (Asgarian et al., 2014; Cai et al., 2022; Feyisa et al., 2014; Gao et al., 2022; Lemoine-

Rodríguez et al., 2022; Pramanik & Punia, 2019; W. Zhou, F. Cao, et al., 2019) 

 Fractal dimension index 

(FRAC) 
𝐹𝑅𝐴𝐶 =

2 ∗ ln  (0.25 ∗ 𝑝𝑖𝑗)

ln𝐴𝑖𝑗
 

The index is based on the patch perimeter and the 

patch area and describes the patch complexity. 

Because it is standardized, it is scale 

independent, meaning that increasing the patch 

size while not changing the patch form will not 

change the ratio. 

1≤FRAC≤2 

Approaches FRAC = 1 for a 

squared patch shape form and 

FRAC = 2 for an irregular 

patch shape. 

5 

 (Cai et al., 2022; Chen et al., 2014b; Fan et al., 2019; Pang et al., 2022; Wang et al., 2022; 

Yu et al., 2017) 

Core area 

metrics 

Core area index (CAI) 
𝐶𝐴𝐼 = (

𝑎𝑖𝑗
𝑐𝑜𝑟𝑒

𝑎𝑖𝑗
) ∗ 100 

It equals the percentage of a patch that is core area. 

A cell is defined as core area if the cell has no 

neighbor with a different value than itself 

(rook's case). It describes patch area and shape 

simultaneously (more core area when the patch 

is large and the shape is rather compact, i.e., a 

square). Because the index is relative, it is 

comparable among patches with different area. 

0≤CAI≤100 

CAI = 0 when the patch has no 

core area and approaches CAI 

= 100 with increasing 

percentage of core area within 

a patch. 

1 

 (Asgarian et al., 2014) 

Self-defined 

metrics 

Mean shape index 

(MSI) 
𝑀𝑆𝐼 =

𝑝𝑖𝑗

√𝐴𝑖𝑗

 
NA Increases, without limit, as the 

shape complexity increases. 

 (Jaganmohan et al., 2016) 

 Mean span 

(MS) 
𝑀𝑆 =

𝐿𝑤 + 𝐿𝑙

2
 

where 𝐿𝑤  is the park width, and 𝐿𝑙  is the park 

length. 

NA  (Vaz Monteiro et al., 2016) 

 Park vegetation and 

shape index 

(PVSI) 

𝑃𝑉𝑆𝐼 = 𝑙𝑜𝑔10 (
𝐴𝑡𝑟𝑒𝑒 + 𝐴𝑠ℎ𝑟𝑢𝑏

𝑆𝐻𝐴𝑃𝐸
) 

where 𝐴𝑡𝑟𝑒𝑒 and 𝐴𝑠ℎ𝑟𝑢𝑏 refer to the areas of tree 

and shrub cover (m2). Designed to interpret 

PCI. 

NA  (Cao et al., 2010) 

 Length-width ratio 
𝑆𝐼 =

𝐿𝑙

𝐿𝑤
 

where 𝐿𝑤  is the park width, and 𝐿𝑙  is the park 

length. 

NA  (Sun et al., 2021) 
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 Self-defined shape 

factor 
𝑆𝐼 =

𝐴𝑖𝑗

𝑝𝑖𝑗
 

NA SI > 0 

Increases, without limit, as the 

shape complexity decreases. 

 (Peng et al., 2021)* 

* Confirmed by personal correspondence with the corresponding authors. 

# Calculation formulas and descriptions are adopted from McGarigal et al. (2012) and https://r-spatialecology.github.io/landscapemetrics/index.html (accessed Oct. 2022). A area, p perimeter. 

  

https://r-spatialecology.github.io/landscapemetrics/index.html
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Table B2 2D class level LMs used in reviewed papers 

Metric category Landscape metric Calculation# Description Range Frequency in reviewed papers 

Area and edge 

metrics 

Largest patch 

index (LPI) 
𝐿𝑃𝐼 =

𝑚𝑎𝑥𝑗=1
𝑛 (𝑎𝑖𝑗)

𝐴
∗ 100 

It is the percentage of the landscape covered 

by the corresponding largest patch of 

each class i. It is a simple measure of 

dominance. 

0 < LPI <= 100 

Approaches LPI = 0 when the largest patch is 

becoming small and equals LPI = 100 when only 

one patch is present 

51 

 (Amani-Beni et al., 2019; Athukorala & Murayama, 2020, 2021; D. Chen et al., 

2022; J. Chen, P. Du, et al., 2022; J. Chen, W. Zhan, et al., 2022; J. Chen et 

al., 2021; Cheng et al., 2015; Feng & Myint, 2016; Gage & Cooper, 2017; G. 

Guo et al., 2020; Guo et al., 2019; He et al., 2021; Hou & Estoque, 2020; Hu 

et al., 2021; Karunaratne et al., 2022; Kong, Yin, James, et al., 2014; B. Li et 

al., 2020; Li et al., 2018; Liu et al., 2021; K. Liu et al., 2022; S. Liu et al., 

2022; Liu et al., 2018a, 2018b; Lu et al., 2020; Ma & Peng, 2022; Ma et al., 

2021; Masoudi & Tan, 2019; Masoudi et al., 2019; Qian et al., 2018; Ren et 

al., 2014; Shaker et al., 2019; Song et al., 2020; Wang et al., 2020; X. Wang 

et al., 2021; Wesley & A. Brunsell, 2019; Q. Wu et al., 2022; Y. Wu et al., 

2022; Xie et al., 2020; Yao et al., 2020; Yuan et al., 2021; H. Zhang et al., 

2022; L. Zhang et al., 2022; M. Zhang et al., 2022; Y. Zhang et al., 2022; L. 

Zhou et al., 2022; Zhou & Cao, 2020; W. Zhou, F. Cao, et al., 2019; Zhou et 

al., 2011; Zhou et al., 2017; W. Zhou et al., 2022) 

 Total edge (TE) 𝑇𝐸 = 𝐸 It measures the configuration of the 

landscape because a highly fragmented 

landscape will have many edges. 

However, total edge is an absolute 

measure, making comparisons among 

landscapes with different total areas 

difficult. 

TE >= 0 

Equals TE = 0 if all cells are edge cells. Increases, 

without limit, as landscape becomes more 

fragmented 

2 

 (Liu et al., 2018a; M. Zhang et al., 2022) 

 Edge density (ED) 
𝐸𝐷 =

∑ 𝑒𝑖𝑘
𝑚
𝑘=1

𝐴
∗ 10000 

It describes the configuration of the 

landscape, e.g. because an aggregation 

of the same class will result in a low 

edge density. The metric is standardized 

to the total landscape area, and therefore 

comparisons among landscapes with 

different total areas are possible. 

ED >= 0 

Equals ED = 0 if only one patch is present (and the 

landscape boundary is not included) and 

increases, without limit, as the landscapes 

becomes more patchy 

 

 

 

59 

 (An et al., 2022; J. Chen, P. Du, et al., 2022; Chen et al., 2020; J. Chen, W. Zhan, 

et al., 2022; J. Chen et al., 2021; Cheng et al., 2015; Connors et al., 2012; 

Dugord et al., 2014; Feng & Myint, 2016; Gage & Cooper, 2017; G. Guo et 

al., 2020; Guo et al., 2021; Guo et al., 2019; He et al., 2021; Hu et al., 2021; 

Huang & Wang, 2019; Kamarianakis et al., 2017; Kowe et al., 2021; B. Li et 

al., 2020; Li et al., 2011; T. Li et al., 2021; Li et al., 2017; Li et al., 2013; Li 

et al., 2012; Liu et al., 2016; Liu et al., 2018a; Lu et al., 2020; Lyu et al., 

2023; Maimaitiyiming et al., 2014; Masoudi & Tan, 2019; Masoudi et al., 

2019; Naeem et al., 2018; Peng et al., 2018; Qian et al., 2018; Rakoto et al., 

2021; Shi & Zhao, 2022; Song et al., 2020; Terfa et al., 2020; Wang & Zhou, 

2022; Wang et al., 2023; X. Wang et al., 2021; Wen et al., 2011; Wesley & A. 

Brunsell, 2019; Wu et al., 2021; Wu et al., 2014; Q. Wu et al., 2022; Yan et 

al., 2019; C. Yang et al., 2021; L. Yang et al., 2021; Yao et al., 2020; Ye et al., 

2021; Yu et al., 2020; Yuan et al., 2021; M. Zhang et al., 2022; Zhao et al., 

2020; G. Zhou et al., 2019; L. Zhou et al., 2022; Zhou et al., 2011; Zhou et 

al., 2017) 
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Metric category Landscape metric Calculation# Description Range Frequency in reviewed papers 

 Patch area 

distribution 

(AREA_) 

𝐴𝑅𝐸𝐴_𝑀𝑁

= 𝑚𝑒𝑎𝑛(𝐴𝑅𝐸𝐴[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝐴𝑅𝐸𝐴_𝐴𝑀

= 𝑎𝑚(𝐴𝑅𝐸𝐴[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝐴𝑅𝐸𝐴_𝑆𝐷

= 𝑠𝑑(𝐴𝑅𝐸𝐴[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝐴𝑅𝐸𝐴_𝐶𝑉

= 𝑐𝑣(𝐴𝑅𝐸𝐴[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

 

The metric summarizes each class as the 

mean / area weighted mean / standard 

deviation / coefficient of variation of all 

patch areas belonging to class i. 

≥ 0 

AREA_MN/AM=0 if all patches are small. 

AREA_SD/CV = 0 if all patches are identical in 

size. 

 

56 

AREA_MN 

 (Athukorala & Murayama, 2020, 2021; Chakraborti et al., 2019; J. Chen, W. 

Zhan, et al., 2022; Cheng et al., 2015; Estoque et al., 2017; Feng & Myint, 

2016; Gage & Cooper, 2017; G. Guo et al., 2020; Guo et al., 2019; He et 

al., 2021; Hou & Estoque, 2020; Hu et al., 2021; Karunaratne et al., 2022; 

Ke et al., 2021; Kim et al., 2016; Kong, Yin, James, et al., 2014; Kowe et 

al., 2021; Li et al., 2013; Li et al., 2012; Li et al., 2019; Liu et al., 2021; K. 

Liu et al., 2022; S. Liu et al., 2022; Liu et al., 2018a, 2018b; Lu et al., 2020; 

Ma & Peng, 2022; Ma et al., 2021; Masoudi & Tan, 2019; Masoudi et al., 

2019; Qian et al., 2018; Rakoto et al., 2021; Rouhi et al., 2018; Simwanda 

et al., 2019; Song et al., 2020; Tang et al., 2023; Wang & Zhou, 2022; Wang 

et al., 2023; Wang et al., 2020; Y. Wu et al., 2022; Wu & Zhang, 2018; L. 

Yang et al., 2021; Ye et al., 2021; Yuan et al., 2021; H. Zhang et al., 2022; 

L. Zhang et al., 2022; M. Zhang et al., 2022; L. Zhou et al., 2022; Zhou & 

Cao, 2020; W. Zhou, F. Cao, et al., 2019; Zhou et al., 2011; Zhou et al., 

2017; W. Zhou et al., 2022) 

AREA_AM 

 (Liu et al., 2018a, 2018b; Masoudi & Tan, 2019; Masoudi et al., 2021; 

Masoudi et al., 2019; Shaker et al., 2019; M. Zhang et al., 2022) 

AREA_SD 

 (Feng & Myint, 2016; Qian et al., 2018; Ye et al., 2021; Zhou et al., 2011) 

AREA_CV 

 (Li et al., 2019) 

AREA_MD 

 (M. Zhang et al., 2022) 

 Radius of gyration 

distribution 

(GYRATE_) 

GYRATE_𝑀𝑁

= 𝑚𝑒𝑎𝑛(GYRATE[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

GYRATE_𝐴𝑀

= 𝑎𝑚(GYRATE[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

where, 

𝐺𝑌𝑅𝐴𝑇𝐸 = ∑
ℎ𝑖𝑗𝑟

𝑧

𝑧

𝑟=1

 

 

 

The metric summarizes each class as the 

mean / area weighted mean of the radius 

of gyration of all patches belonging to 

class i. GYRATE measures the distance 

from each cell to the patch centroid and 

is based on cell center-to-cell center 

distances. The metrics characterizes 

both the patch area and compactness. 

≥ 0 

= 0 if every patch is a single cell. Increases, without 

limit, when only one patch is present. 

5 

GYRATE_MN, GYRATE_AM 

 (Gage & Cooper, 2017; Kong, Yin, James, et al., 2014; Liu et al., 2018a, 

2018b; M. Zhang et al., 2022) 
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Metric category Landscape metric Calculation# Description Range Frequency in reviewed papers 

Shape metrics Perimeter-area 

fractal 

dimension 

(PAFRAC) 

𝑃𝐴𝐹𝑅𝐴𝑅𝐶 =
2

𝛽
 

where β is the slope of the 

regression of the area against 

the perimeter (logarithm) 

𝑛𝑖 ∑ln𝑎𝑖𝑗

𝑛

𝑗=1

= 𝑎 + 𝛽𝑛𝑖 ∑ln𝑝𝑖𝑗

𝑛

𝑗=1

 

It describes the patch complexity of class i 

while being scale independent. This 

means that increasing the patch size 

while not changing the patch form will 

not change the metric. However, it is 

only meaningful if the relationship 

between the area and perimeter is linear 

on a logarithmic scale. Furthermore, if 

there are less than 10 patches in class i, 

the metric returns NA because of the 

small-sample issue. 

1 <= PAFRAC <= 2 

Approaches PAFRAC = 1 for patches with simple 

shapes and approaches PAFRAC = 2 for 

irregular shapes 

2 

 (Y. Wang et al., 2021) 

 Perimeter-area 

ratio distribution 

(PARA_) 

PARA_𝑀𝑁

= 𝑚𝑒𝑎𝑛(PARA[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

PARA_𝐴𝑀

= 𝑎𝑚(PARA[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

 

It summarizes each class as the mean / area 

weighted mean of each patch belonging 

to class i. The perimeter-area ratio 

describes the patch complexity in a 

straightforward way. 

>0 

Increases, without limit, as PARA increases, i.e. 

patches become more complex. 

7 

PARA_AM 

 (Kong, Yin, James, et al., 2014; Liu et al., 2021; Song et al., 2020; M. Zhang 

et al., 2022; Zhou & Cao, 2020) 

PARA_MN 

 (Song et al., 2020) 

Not specified 

 (B. Li et al., 2020) 

Special use 

  (Peng et al., 2016) 

 Shape index 

distribution 

(SHAPE_) 

𝑆𝐻𝐴𝑃𝐸_𝑀𝑁

= 𝑚𝑒𝑎𝑛(𝑆𝐻𝐴𝑃𝐸[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝑆𝐻𝐴𝑃𝐸_𝐴𝑀

= 𝑎𝑚(𝑆𝐻𝐴𝑃𝐸[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝑆𝐻𝐴𝑃𝐸_𝑆𝐷

= 𝑠𝑑(𝑆𝐻𝐴𝑃𝐸[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

 

Each class is summarized as the mean / area 

weighted mean / standard deviation of 

each patch belonging to class i. 

SHAPE_MN/AM = 0 if all patches are squares. 

Increases, without limit, as the shapes of patches 

become more complex. 

SHAPE_SD = 0 if all patches have an identical 

shape index. Increases, without limit, as the 

variation of the shape index increases. 

48 

SHAPE_MN 

 (Athukorala & Murayama, 2020; J. Chen, P. Du, et al., 2022; Chen et al., 

2020; J. Chen, W. Zhan, et al., 2022; J. Chen et al., 2021; Estoque et al., 

2017; Hou & Estoque, 2020; Hu et al., 2021; Kim et al., 2016; Kong, Yin, 

James, et al., 2014; Li et al., 2013; Li et al., 2012; Li et al., 2019; Liu et al., 

2018a; Lu et al., 2020; Lyu et al., 2023; Ma et al., 2021; Peng et al., 2018; 

Qian et al., 2018; Rakoto et al., 2021; Rouhi et al., 2018; Simwanda et al., 

2019; Song et al., 2020; Wang et al., 2023; Wang et al., 2020; Wesley & A. 

Brunsell, 2019; Y. Wu et al., 2022; L. Yang et al., 2021; Ye et al., 2021; M. 

Zhang et al., 2022; Zhao et al., 2020; L. Zhou et al., 2022; Zhou & Cao, 

2020; W. Zhou, F. Cao, et al., 2019; Zhou et al., 2011; Zhou et al., 2017) 

SHAPE _AM 

 (Galletti et al., 2019; Ke et al., 2021; Kowe et al., 2021; Y. Li et al., 2020; 

Liu et al., 2018a; Ma & Peng, 2022; Masoudi & Tan, 2019; Masoudi et al., 

2021; Masoudi et al., 2019; Shaker et al., 2019; Song et al., 2020; Tang et 

al., 2023) 

SHAPE _SD 

 (Wesley & A. Brunsell, 2019; Ye et al., 2021; Zhou et al., 2011) 

Different use 

 (X. Chen et al., 2022) 

Not specified 

 (B. Li et al., 2020; Wu & Zhang, 2018) 



12 

 

Metric category Landscape metric Calculation# Description Range Frequency in reviewed papers 

 Fractal index 

distribution 

(FRAC_) 

𝐹𝑅𝐴𝐶_𝐴𝑀

= 𝑎𝑚(𝐹𝑅𝐴𝐶[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝐹𝑅𝐴𝐶_𝑀𝑁

= 𝑚𝑒𝑎𝑛(𝐹𝑅𝐴𝐶[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

 

The metric summarizes each class as the 

mean / area weighted mean of the 

fractal dimension index of all patches 

belonging to class i. 

1≤FRAC_MN≤2 

Approaches 1 for a squared patch shape form and 2 

for an irregular patch shape. 

22 

FRAC_MN 

 (Liu et al., 2018a, 2018b; Lyu et al., 2023; Simwanda et al., 2019; Song et al., 

2020; M. Zhang et al., 2022; Zhao et al., 2020) 

FRAC_AM 

 (An et al., 2022; Connors et al., 2012; Feng & Myint, 2016; Galletti et al., 

2019; Kowe et al., 2021; Liu et al., 2018a, 2018b; Masoudi & Tan, 2019; 

Masoudi et al., 2019; Shaker et al., 2019; Song et al., 2020; X. Wang et al., 

2021; Wen et al., 2011; Xie et al., 2020; L. Zhang et al., 2022) 

Not specified 

 (Dugord et al., 2014; Kamarianakis et al., 2017; Li et al., 2017) 

 

 Related 

circumscribing 

circle 

distribution 

(CIRCLE_) 

𝐶𝐼𝑅𝐶𝐿𝐸_𝐴𝑀

= 𝑎𝑚(𝐶𝐼𝑅𝐶𝐿𝐸[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝐶𝐼𝑅𝐶𝐿𝐸_𝑀𝑁

= 𝑚𝑒𝑎𝑛(𝐶𝐼𝑅𝐶𝐿𝐸[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

where, 

𝐶𝐼𝑅𝐶𝐿𝐸 = 1 −
𝑎𝑖𝑗

𝑎𝑖𝑗
𝑐𝑖𝑟𝑐𝑙𝑒 

It summarizes each class as the mean / area 

weighted mean of the related 

circumscribing circle of all patches 

belonging to class i.  

>0 

= 0 if the related circumscribing circle of all patches 

is small. Increases as the related circumscribing 

circles increase. 

4 

CIRCLE_AM 

 (Bartesaghi-Koc et al., 2020; Liu et al., 2018a; M. Zhang et al., 2022) 

CIRCLE_MN 

 (Guo et al., 2021; Liu et al., 2018a) 

 Contiguity index 

distribution 

(CONTIG_) 

𝐶𝑂𝑁𝑇𝐼𝐺_𝐴𝑀

= 𝑎𝑚(𝐶𝑂𝑁𝑇𝐼𝐺[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝐶𝑂𝑁𝑇𝐼𝐺_𝑀𝑁

= 𝑚𝑒𝑎𝑛(𝐶𝑂𝑁𝑇𝐼𝐺[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

where, 

𝐶𝑂𝑁𝑇𝐼𝐺 =

[
∑ 𝑐𝑖𝑗𝑟

𝑧
𝑟=1

𝑎𝑖𝑗
] − 1

𝑣 − 1
 

It summarizes each class as the mean of 

each patch belonging to class i. It 

assesses the spatial connectedness 

(contiguity) of cells in patches. 

0≤CONTIG≤1 

Equals 0 for one-pixel patches and increases to a 

limit of 1 (fully connected patch). 

7 

CONTIG_AM 

 (Galletti et al., 2019; Guo et al., 2021; Liu et al., 2018a; Song et al., 2020; M. 

Zhang et al., 2022) 

CONTIG_MN 

 (Chakraborti et al., 2019; Liu et al., 2018a; Song et al., 2020) 

Not specified 

 (Dugord et al., 2014) 

Aggregation 

metrics 

Interspersion and 

juxtaposition 

index (IJI) 

𝐼𝐽𝐼

=

−∑ [(
𝑒𝑖𝑘

∑ 𝑒𝑖𝑘
𝑚
𝑘=1

) ln (
𝑒𝑖𝑘

∑ 𝑒𝑖𝑘
𝑚
𝑘=1

)]𝑚
𝑘=1

ln (𝑚 − 1)

∗ 100 

It describes the intermixing of classes (i.e. 

without considering like adjacencies - 

the diagonal of the adjacency table). 

The number of classes to calculate IJI 

must be >= than 3. 

0 < IJI <= 100 

Approaches 0 if a class is only adjacent to a single 

other class and equals 100 when a class is 

equally adjacent to all other classes. 

8 

 (An et al., 2022; Chakraborti et al., 2019; Feng & Myint, 2016; Gage & Cooper, 

2017; Galletti et al., 2019; B. Li et al., 2020; Song et al., 2020; M. Zhang et al., 

2022) 

 Percentage of like 

adjacencies 

(PLADJ) 

𝑃𝐿𝐴𝐷𝐽 = (
𝑔𝑖𝑗

∑ 𝑔𝑖𝑘
𝑚
𝑘=1

) ∗ 100 
It calculates the frequency how often 

patches of different classes i (focal 

class) and k are next to each other, and 

following is a measure of class 

aggregation. The adjacencies are 

counted using the double-count method. 

0 <= PLADJ <= 100 

Equals PLADJ = 0 if class i is maximal 

disaggregated, i.e. every cell is a different patch. 

Equals PLADJ = 100 when the only one patch is 

present. 

8 

 (D. Chen et al., 2022; Dugord et al., 2014; Lyu et al., 2023; Shaker et al., 2019; 

Song et al., 2020; Wesley & A. Brunsell, 2019; Zawadzka et al., 2021; M. Zhang 

et al., 2022) 
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Metric category Landscape metric Calculation# Description Range Frequency in reviewed papers 

 Aggregation index 

(AI) 
𝐴𝐼 = [

𝑔𝑖𝑖

𝑚𝑎𝑥 − 𝑔𝑖𝑖
] (100) 

It equals the number of like adjacencies 

divided by the theoretical maximum 

possible number of like adjacencies for 

that class. The metric is based on he 

adjacency matrix and the the single-

count method. 

0 <= AI <= 100 

Equals 0 for maximally disaggregated and 100 for 

maximally aggregated classes. 

39 

 (Amani-Beni et al., 2019; An et al., 2022; Athukorala & Murayama, 2020, 2021; 

D. Chen et al., 2022; Estoque et al., 2017; Feng et al., 2020; Hou & Estoque, 

2020; Kong, Yin, James, et al., 2014; B. Li et al., 2020; Liu et al., 2021; S. Liu et 

al., 2022; Liu et al., 2018a, 2018b; Lu et al., 2020; Lyu et al., 2023; Ma & Peng, 

2022; Ma et al., 2021; Masoudi & Tan, 2019; Masoudi et al., 2019; Ren et al., 

2014; Shaker et al., 2019; Simwanda et al., 2019; Song et al., 2020; Wang et al., 

2020; X. Wang et al., 2021; Wu et al., 2021; Y. Wu et al., 2022; Wu & Zhang, 

2018; Xie et al., 2020; L. Yang et al., 2021; Yao et al., 2020; Yuan et al., 2021; L. 

Zhang et al., 2022; M. Zhang et al., 2022; Y. Zhang et al., 2022; L. Zhou et al., 

2022; Zhou & Cao, 2020; W. Zhou, F. Cao, et al., 2019) 

 Clumpiness index 

(CLUMPY) 
𝐺𝑖𝑣𝑒 𝐺𝑖 = (

𝑔𝑖𝑖

∑ 𝑔𝑖𝑘
𝑚
𝑘=1

) 

𝐶𝐿𝑈𝑀𝑃𝑌

=

[
 
 
 
 
 
 

𝐺𝑖 − 𝑃𝑖

1 − 𝑃𝑖
 𝑓𝑜𝑟 𝐺𝑖 ≥ 𝑃𝑖

𝐺𝑖 − 𝑃𝑖

1 − 𝑃𝑖
 𝑓𝑜𝑟 𝐺𝑖 < 𝑃𝑖 , 𝑃𝑖 ≥ 0.5

𝐺𝑖 − 𝑃𝑖

−𝑃𝑖
 𝑓𝑜𝑟 𝐺𝑖 < 𝑃𝑖 , 𝑃𝑖 < 0.5

]
 
 
 
 
 
 

 

It equals the proportional deviation of the 

proportion of like adjacencies involving 

the corresponding class from that 

expected under a spatially random 

distribution. The metric is based on the 

adjacency matrix and the the double-

count method. 

-1 <= CLUMPY <= 1 

Equals -1 for maximally disaggregated, 0 for 

randomly distributed and 1 for maximally 

aggregated classes. 

9 

 (Gage & Cooper, 2017; B. Li et al., 2020; Li et al., 2011; Liu et al., 2018a; 

Shaker et al., 2019; Song et al., 2020; Wu et al., 2021; M. Zhang et al., 2022; G. 

Zhou et al., 2019) 

 Landscape shape 

index (LSI) 
𝐿𝑆𝐼 =

𝑝𝑖𝑗

min𝑝𝑖𝑗
 

LSI is an 'Aggregation metric'. It is the ratio 

between the actual edge length of class i 

and the hypothetical minimum edge 

length of class i. The minimum edge 

length equals the edge length if class i 

would be maximally aggregated. 

LSI >= 1 

Increases, without limit, as the length of the actual 

edges increases, i.e. the patches become less 

compact. 

44 

 (Amani-Beni et al., 2019; Chakraborti et al., 2019; D. Chen et al., 2022; Cheng 

et al., 2015; Connors et al., 2012; Gage & Cooper, 2017; Guo et al., 2021; Huang 

& Wang, 2019; Kamarianakis et al., 2017; Li et al., 2018; Li et al., 2011; T. Li et 

al., 2020; T. Li et al., 2021; Li et al., 2017; Li et al., 2013; Li et al., 2012; H. Liu 

& Q. Weng, 2009; Liu et al., 2016; Liu et al., 2018a, 2018b; Lyu et al., 2023; Ma 

& Peng, 2022; Masoudi & Tan, 2019; Masoudi et al., 2019; Naeem et al., 2018; 

Peng et al., 2018; Rakoto et al., 2021; Ren et al., 2014; Shi & Zhao, 2022; Song 

et al., 2020; Tang et al., 2023; Wang & Zhou, 2022; X. Wang et al., 2021; Wu et 

al., 2021; Wu et al., 2014; Yan et al., 2019; Yin et al., 2019; Zawadzka et al., 

2021; H. Zhang et al., 2022; L. Zhang et al., 2022; M. Zhang et al., 2022; Y. 

Zhang et al., 2022; Zhao et al., 2020) 

 Normalized 

landscape shape 

index (nLSI) 

𝑛𝐿𝑆𝐼 =
𝑒𝑖 − min 𝑒𝑖

max𝑒𝑖 − min 𝑒𝑖
 

It describes the ratio of the actual edge 

length of class i in relation to the 

hypothetical range of possible edge 

lengths of class i (min/max). It ignores 

all background cells when calculating 

the minimum and maximum total edge 

length.  

0 <= nlsi <= 1 

Equals nLSI = 0 when only one squared patch is 

present. nLSI increases the more disaggregated 

patches are and equals nLSI = 1 for a maximal 

disaggregated (i.e. a "checkerboard pattern"). 

4 

 (Bartesaghi-Koc et al., 2020; Gage & Cooper, 2017; Liu et al., 2018a; M. Zhang 

et al., 2022) 
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Metric category Landscape metric Calculation# Description Range Frequency in reviewed papers 

 Patch cohesion 

index 

(COHESION) 

𝐶𝑂𝐻𝐸𝑆𝐼𝑂𝑁

= 1 − (
∑ 𝑝𝑖𝑗

𝑛
𝑗=1

∑ 𝑝𝑖𝑗
𝑛
𝑗=1 √𝑎𝑖𝑗

)

∗ (1 −
1

√𝑍
)
−1

∗ 100 

It characterizes the connectedness of 

patches belonging to class i. It can be 

used to assess if patches of the same 

class are located aggregated or rather 

isolated and thereby COHESION gives 

information about the configuration of 

the landscape. 

0 < COHESION < 100 

Approaches COHESION = 0 if patches of class i 

become more isolated. Increases if patches of 

class i become more aggregated. 

29 

 (D. Chen et al., 2022; J. Chen, P. Du, et al., 2022; Chen et al., 2020; J. Chen et 

al., 2021; Feng et al., 2020; Gage & Cooper, 2017; Huang & Wang, 2019; 

Karunaratne et al., 2022; Kim et al., 2016; Kowe et al., 2021; B. Li et al., 2020; 

Liu et al., 2018a; Ma & Peng, 2022; Ren et al., 2014; Shaker et al., 2019; Song et 

al., 2020; Sun et al., 2022; Wesley & A. Brunsell, 2019; Q. Wu et al., 2022; Ye et 

al., 2021; Yu et al., 2020; Zawadzka et al., 2021; M. Zhang et al., 2022; Y. Zhang 

et al., 2022; Zhou & Cao, 2020; Zhou et al., 2011) 

 Number of patches 

(NP) 

𝑁𝑃 = 𝑛𝑖 It describes the fragmentation of a class, 

however, does not necessarily contain 

information about the configuration or 

composition of the class. 

NP >= 1 

Equals NP = 1 when only one patch is present and 

increases, without limit, as the number of 

patches increases 

15 

 (Amani-Beni et al., 2019; D. Chen et al., 2022; Gage & Cooper, 2017; 

Karunaratne et al., 2022; Kim et al., 2016; Kong, Yin, James, et al., 2014; 

Masoudi & Tan, 2019; Masoudi et al., 2019; Song et al., 2020; Q. Wu et al., 

2022; Yin et al., 2019; L. Zhang et al., 2022; M. Zhang et al., 2022; W. Zhou, F. 

Cao, et al., 2019; W. Zhou et al., 2022) 

 Patch density (PD) 
𝑃𝐷 =

𝑛𝑖

𝐴
∗ 10000 ∗ 100 

It describes the fragmentation of a class, 

however, does not necessarily contain 

information about the configuration or 

composition of the class. 

PD > 0 

Increases as the landscape gets more patchy. 

Reaches its maximum if every cell is a different 

patch. 

66 

 (Amani-Beni et al., 2019; Chakraborti et al., 2019; D. Chen et al., 2022; J. Chen, 

P. Du, et al., 2022; Chen et al., 2020; J. Chen et al., 2021; Cheng et al., 2015; 

Connors et al., 2012; Dugord et al., 2014; Gage & Cooper, 2017; Galletti et al., 

2019; Guo et al., 2021; Huang & Wang, 2019; Kamarianakis et al., 2017; Ke et 

al., 2021; Kong, Yin, James, et al., 2014; B. Li et al., 2020; Li et al., 2011; Li et 

al., 2017; Li et al., 2013; Li et al., 2012; Li et al., 2019; H. Liu & Q. Weng, 2009; 

H. Liu & Q. H. Weng, 2009; Liu et al., 2021; K. Liu et al., 2022; Liu et al., 2016; 

Liu et al., 2018a, 2018b; Lyu et al., 2023; Ma & Peng, 2022; Maimaitiyiming et 

al., 2014; Masoudi & Tan, 2019; Masoudi et al., 2021; Masoudi et al., 2019; 

Naeem et al., 2018; Peng et al., 2018; Peng et al., 2016; Qian et al., 2018; Rakoto 

et al., 2021; Ren et al., 2014; Shaker et al., 2019; Shi & Zhao, 2022; Simwanda et 

al., 2019; Song et al., 2020; Tang et al., 2023; Terfa et al., 2020; X. Wang et al., 

2021; Y. Wang et al., 2021; Wesley & A. Brunsell, 2019; Wu et al., 2021; Wu et 

al., 2014; Xie et al., 2020; Yan et al., 2019; C. Yang et al., 2021; L. Yang et al., 

2021; Yao et al., 2020; Ye et al., 2021; Yin et al., 2019; Yu et al., 2020; Yuan et 

al., 2021; M. Zhang et al., 2022; G. Zhou et al., 2019; L. Zhou et al., 2022; Zhou 

& Cao, 2020; Zhou et al., 2011) 

 Landscape division 

index 

(DIVISION) 

𝐷𝐼𝑉𝐼𝑆𝐼𝑂𝑁

= (1 − ∑(
𝑎𝑖𝑗

𝐴
)
2

𝑛

𝑗=1

) 

It can be in as the probability that two 

randomly selected cells are not located 

in the same patch of class i. The 

landscape division index is negatively 

correlated with the effective mesh size 

(MESH). 

0 <= Division < 1 

Equals DIVISION = 0 if only one patch is present. 

Approaches DIVISION = 1 if all patches of 

class i are single cells. 

12 

 (D. Chen et al., 2022; Feng et al., 2020; B. Li et al., 2020; T. Li et al., 2021; Liu 

et al., 2018a, 2018b; Shaker et al., 2019; Song et al., 2020; Y. Wang et al., 2021; 

Q. Wu et al., 2022; M. Zhang et al., 2022; Zhao et al., 2020) 

 Splitting index 

(SPLIT) 
𝑆𝑃𝐿𝐼𝑇 =

𝐴2

∑ 𝑎𝑖𝑗
2𝑛

𝑗=1

 
It describes the number of patches if all 

patches of class i would be divided into 

equally sized patches. 

1 <= SPLIT <= Number of cells squared 

Equals SPLIT = 1 if only one patch is present. 

Increases as the number of patches of class i 

increases and is limited if all cells are a patch 

9 

 (D. Chen et al., 2022; B. Li et al., 2020; Liu et al., 2018a; Ren et al., 2014; Shi & 

Zhao, 2022; Sun et al., 2022; X. Wang et al., 2021; H. Zhang et al., 2022; M. 

Zhang et al., 2022) 
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Metric category Landscape metric Calculation# Description Range Frequency in reviewed papers 

 Effective mesh size 

(MESH) 
𝑀𝐸𝑆𝐻 =

∑ 𝑎𝑖𝑗
2𝑛

𝑗=1

𝐴
∗

1

10000
 

Because each patch is squared before the 

sums for each group i are calculated and 

the sum is standardized by the total 

landscape area, MESH is a relative 

measure of patch structure.  

cell size / total area <= MESH <= total area 

Equals cell size/total area if class covers only one 

cell and equals total area if only one patch is 

present. 

5 

 (D. Chen et al., 2022; Liu et al., 2018a; Shaker et al., 2019; Q. Wu et al., 2022; 

M. Zhang et al., 2022) 

 Euclidean nearest 

neighbor 

distance 

distribution 

(ENN_) 

𝐸𝑁𝑁_𝐴𝑀

= 𝑎𝑚(𝐸𝑁𝑁[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝐸𝑁𝑁_𝑀𝑁

= 𝑚𝑒𝑎𝑛(𝐸𝑁𝑁[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝐸𝑁𝑁_𝑆𝐷

= 𝑠𝑑(𝐸𝑁𝑁[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

where, 

𝐸𝑁𝑁 = ℎ𝑖𝑗 

 

It summarizes each class as the mean / area 

weighted mean / standard deviation of 

each patch belonging to class i. 

ENN_MN/_AM> 0 

= 0 as the distance to the nearest neighbor decreases, 

i.e. patches of the same class i are more 

aggregated. 

ENN_SD > 0 

= 0 if the nearest-neighbor distance is identical for 

all patches. 

19 

ENN_MN 

 (Cheng et al., 2015; Ke et al., 2021; Kim et al., 2016; Li et al., 2013; Li et al., 

2012; Li et al., 2019; Masoudi & Tan, 2019; Masoudi et al., 2019; Rakoto et al., 

2021; Rouhi et al., 2018; Terfa et al., 2020; Wu et al., 2021; Q. Wu et al., 2022; 

Ye et al., 2021; Yu et al., 2020; M. Zhang et al., 2022; Zhou et al., 2011) 

ENN_AM 

 (Masoudi & Tan, 2019; Masoudi et al., 2021; Masoudi et al., 2019; L. Zhang et 

al., 2022) 

ENN_SD 

 (Ye et al., 2021; Zhou et al., 2011) 

 Proximity index 

distribution 

(PROX_) 

𝑃𝑅𝑂𝑋_𝐴𝑀

= 𝑎𝑚(𝑃𝑅𝑂𝑋[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝑃𝑅𝑂𝑋_𝑀𝑁

= 𝑚𝑒𝑎𝑛(𝑃𝑅𝑂𝑋[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

where, 

𝑃𝑅𝑂𝑋 = ∑
𝑎𝑖𝑗𝑠

ℎ𝑖𝑗𝑠
2

𝑛

𝑠=1

 

 

It summarizes each class as the mean / area 

weighted mean of each patch belonging 

to class i. 

PROX_≥0 

= 0 if all patches of the corresponding patch type 

have no neighbors of the same type within the 

specified search radius. It increases as patches of 

the corresponding patch type become less 

isolated and the patch type becomes less 

fragmented in distribution. 

4 

PROX_MN 

 (Feng & Myint, 2016; Li et al., 2019) 

PROX_AM 

 (Shaker et al., 2019) 

Not specified 

 (Yu et al., 2020) 

 Connectance 

(CONNECT) 𝐶𝑂𝑁𝑁𝐸𝐶𝑇 = [
∑ 𝑐𝑖𝑗𝑘

𝑛
𝑗≠𝑘

𝑛𝑖(𝑛𝑖 − 1)
2

] 

It equals the number of functional joinings 

between all patches of the 

corresponding patch type, divided by 

the number of possible joinings. 

0<CONNECT≤100 

=0 when either the focal class consists of a single 

patch or none of the patches of the focal class 

are connected. =100 when every patch of the 

focal class is connected. 

2 

 (Amani-Beni et al., 2019; Shaker et al., 2019) 

Core area metrics Core area 

distribution 

(CORE_) 

𝐶𝑂𝑅𝐸_𝐴𝑀

= 𝑎𝑚(𝐶𝑂𝑅𝐸[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

where, 

𝐶𝑂𝑅𝐸 = 𝑛𝑖𝑗
𝑐𝑜𝑟𝑒 

 

 

 

The metric summarizes each class as the 

area weighted mean of the core area of 

all patches belonging to class i. 

CORE_AM ≥0 

= 0 if CORE = 0 for all patches. Increases, without 

limit, as the core area indices increase. 

1 

CORE_AM 

 (Shaker et al., 2019) 

 Core area index 

distribution 

(CAI_) 

𝐶𝐴𝐼_𝐴𝑀

= 𝑎𝑚(𝐶𝐴𝐼[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝐶𝐴𝐼_𝑀𝑁

= 𝑚𝑒𝑎𝑛(𝐶𝐴𝐼[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

 

The metric summarizes each class as the 

mean / area weighted mean of the core 

area index of all patches belonging to 

class i. 

0≤CAI_MN/AM≤100 

= 0 when all patches have no core area, and = 100 

with increasing percentage of core area within 

patches. 

1 

CAI_AM 

 (Shaker et al., 2019) 
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Metric category Landscape metric Calculation# Description Range Frequency in reviewed papers 

Contrast metrics Contrast-weighted 

edge density 

(CWED) 

𝐶𝑊𝐸𝐷 =
∑ (𝑒𝑖𝑘 × 𝑑𝑖𝑘)

𝑚
𝑘=1

𝐴
 

It equals the sum of lengths of each edge 

segment involving the corresponding 

patch type multiplied by the 

corresponding contrast weight, divided 

by the sum of the lengths of all edge 

segments involving the same type. 

CWED ≥0 

=0 when there is no class edge in the landscape. It 

increases as the amount of class edge in the 

landscape increases and / or as the contrast in 

edges involving the corresponding patch type 

increase. 

1 

 (Du et al., 2016) 

Others FD 
𝐹𝐷 =

𝑛

𝐴𝑖
 

It measures the fragmentation of patches of 

the same class. 

FD>0 

It increases as the patch type is increasingly 

fragmented. 

1 

 (Wu & Zhang, 2018) 

* Confirmed by personal correspondence with the corresponding authors. 

# Calculation formulas are  
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Table B3 2D landscape level LMs used in reviewed papers 

Metric category Landscape metric Calculation# Description Range Frequency in reviewed papers 

Area and edge metrics Largest patch index 

(LPI) 
𝐿𝑃𝐼 =

max𝑎𝑖𝑗

𝐴
∗ 100 

It is the percentage of the landscape covered by the 

largest patch in the landscape. It is a simple 

measure of dominance. 

0 < LPI <= 100 

Approaches LPI = 0 when the largest patch is becoming 

small and equals LPI = 100 when only one patch is present 

10 

 (Cheng et al., 2015; Das et al., 2020; Du et al., 2016; Gage & 

Cooper, 2017; A. Guo et al., 2020; B. Li et al., 2020; X. Wang 

et al., 2021; Weber et al., 2014; Yang et al., 2022; Zhao et al., 

2020) 

 Total edge (TE) 

𝑇𝐸 = ∑ 𝑒𝑖𝑘

𝑚

𝑘=1

 

Total edge includes all edges. It measures the 

configuration of the landscape because a highly 

fragmented landscape will have many edges. 

However, total edge is an absolute measure, 

making comparisons among landscapes with 

different total areas difficult. 

TE >= 0 

Equals TE = 0 if all cells are edge cells. Increases, without 

limit, as landscape becomes more fragmented 

1 

 (Weber et al., 2014) 

 Edge density (ED) 
𝐸𝐷 =

𝐸

𝐴
∗ 10000 

The edge density equals all edges in the landscape 

in relation to the landscape area. The metric 

describes the configuration of the landscape, e.g. 

because an overall aggregation of classes will 

result in a low edge density. The metric is 

standardized to the total landscape area, and 

therefore comparisons among landscapes with 

different total areas are possible. 

ED >= 0 

Equals ED = 0 if only one patch is present (and the 

landscape boundary is not included) and increases, without 

limit, as the landscapes becomes more patchy 

8 

 (Bera et al., 2022; Cheng et al., 2015; Connors et al., 2012; Li 

et al., 2017; Rakoto et al., 2021; X. Wang et al., 2021; Weber 

et al., 2014; Wu et al., 2021) 

 Patch area distribution 

(AREA_) 

𝐴𝑅𝐸𝐴_𝑀𝑁

= 𝑚𝑒𝑎𝑛(𝐴𝑅𝐸𝐴[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝐴𝑅𝐸𝐴_𝐴𝑀

= 𝑎𝑚(𝐴𝑅𝐸𝐴[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝐴𝑅𝐸𝐴_𝑆𝐷

= 𝑠𝑑(𝐴𝑅𝐸𝐴[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝐴𝑅𝐸𝐴_𝐶𝑉

= 𝑐𝑣(𝐴𝑅𝐸𝐴[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

 

The metric summarizes the total landscape as the 

mean / area weighted mean / standard deviation / 

coefficient of variation of all patch areas belonging 

to class i. 

≥ 0 

AREA_MN/AM=0 if all patches are small. 

AREA_SD/CV = 0 if all patches are identical in size. 

 

7 

AREA_MN 

 (Cheng et al., 2015; Das et al., 2020; Ma & Peng, 2022; 

Rakoto et al., 2021) 

AREA_SD 

 (Du et al., 2016; Weber et al., 2014) 

AREA_AM 

 (Liu et al., 2018b) 

AREA_CV 

 (Weber et al., 2014) 

 Radius of gyration 

distribution 

(GYRATE_) 

GYRATE_𝐴𝑀

= 𝑎𝑚(GYRATE[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

where, 

𝐺𝑌𝑅𝐴𝑇𝐸 = ∑
ℎ𝑖𝑗𝑟

𝑧

𝑧

𝑟=1

 

 

The metric summarizes the whole landscape as the 

area weighted mean of the radius of gyration of all 

patches in the total landscape. GYRATE measures 

the distance from each cell to the patch centroid 

and is based on cell center-to-cell center distances. 

The metrics characterizes both the patch area and 

compactness. 

≥ 0 

= 0 if every patch is a single cell. Increases, without limit, 

when only one patch is present. 

1 

GYRATE_AM 

 (Liu et al., 2018b) 
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Metric category Landscape metric Calculation# Description Range Frequency in reviewed papers 

Shape metrics Perimeter-area fractal 

dimension (PAFRAC) 
𝑃𝐴𝐹𝑅𝐴𝑅𝐶 =

2

𝛽
 

where β is the slope of the 

regression of the area against the 

perimeter (logarithm) 

𝑁 ∑∑ln𝑎𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

= 𝑎 + 𝑁 ∑∑ln𝑝𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 

It describes the patch complexity of the landscape 

while being scale independent. This means that 

increasing the patch size while not changing the 

patch form will not change the metric. 

1≤PAFRAC≤2 

Approaches 1 for shapes with very simple perimeters and 

approaches 2 for shapes with highly convoluted, plane-

filling perimeters. 

1 

 (H. Liu & Q. H. Weng, 2009) 

 Shape index 

distribution 

(SHAPE_) 

𝑆𝐻𝐴𝑃𝐸_𝑀𝑁

= 𝑚𝑒𝑎𝑛(𝑆𝐻𝐴𝑃𝐸[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝑆𝐻𝐴𝑃𝐸_𝐴𝑀

= 𝑎𝑚(𝑆𝐻𝐴𝑃𝐸[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝑆𝐻𝐴𝑃𝐸_𝑆𝐷

= 𝑠𝑑(𝑆𝐻𝐴𝑃𝐸[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

 

The total landscape is summarized as the mean / 

area weighted mean / standard deviation of each 

patch belonging to the total landscape. 

SHAPE_MN/AM = 0 if all patches are squares. Increases, 

without limit, as the shapes of patches become more 

complex. 

SHAPE_SD = 0 if all patches have an identical shape 

index. Increases, without limit, as the variation of the shape 

index increases. 

7 

SHAPE_AM 

 (Galletti et al., 2019; Ma & Peng, 2022; Weber et al., 2014) 

SHAPE_MN 

 (Bera et al., 2022; Rakoto et al., 2021; Weber et al., 2014) 

SHAPE_SD 

 (J. Chen, P. Du, et al., 2022; Du et al., 2016) 

 Fractal index 

distribution (FRAC_) 

𝐹𝑅𝐴𝐶_𝐴𝑀

= 𝑎𝑚(𝐹𝑅𝐴𝐶[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

𝐹𝑅𝐴𝐶_𝑀𝑁

= 𝑚𝑒𝑎𝑛(𝐹𝑅𝐴𝐶[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

 

The metric summarizes the landscape as the mean / 

area weighted mean of the fractal dimension index 

of all patches belonging to class i. 

1≤FRAC_MN≤2 

Approaches 1 for a squared patch shape form and 2 for an 

irregular patch shape. 

9 

 (Connors et al., 2012; Galletti et al., 2019; Li et al., 2017; H. 

Liu & Q. H. Weng, 2009; Liu et al., 2018b; X. Wang et al., 

2021; Y. Wang et al., 2021; Weber et al., 2014; Yu et al., 2020) 

Aggregation metrics Contagion 

(CONTAG) 
𝐶𝑂𝑁𝑇𝐴𝐺 = 1 +

∑ 𝑝𝑞 ln(𝑝𝑞)
𝑛𝑎
𝑞=1

2 ln(𝑡)
 

It is based on cell adjacencies and describes the 

probability of two random cells belonging to the 

same class. It is affected by both the dispersion and 

interspersion of classes. E.g., low class dispersion 

(= high proportion of like adjacencies) and low 

interspersion (= uneven distribution of pairwise 

adjacencies) lead to a high contagion value. 

0 < Contag <=100 

Approaches CONTAG = 0 if all cells are unevenly 

distributed and 100 indicates that all cells are equally 

adjacent to all other classes. 

14 

 (J. Chen, P. Du, et al., 2022; Connors et al., 2012; Das et al., 

2020; Du et al., 2016; Gage & Cooper, 2017; Galletti et al., 

2019; Kamarianakis et al., 2017; Li et al., 2017; H. Liu & Q. 

H. Weng, 2009; Wu et al., 2021; Wu et al., 2014; Wu et al., 

2019; Y. Zhang et al., 2022; Zhao et al., 2020) 

 Interspersion and 

juxtaposition index 

(IJI) 

𝐼𝐽𝐼

=
−∑ ∑ [(

𝑒𝑖𝑘
𝐸 ) ln (

𝑒𝑖𝑘
𝐸 )]𝑚

𝑘=𝑖+1
𝑚
𝑖=1

ln(0.5[𝑚(𝑚 − 1)])

∗ 100 

It describes the intermixing of classes (i.e. without 

considering like adjacencies - the diagonal of the 

adjacency table). 

0<IJI≤100 

Approaches 0 if a class is only adjacent to a single other 

class and equals 100 when a class is equally adjacent to all 

other classes. 

4 

 (Das et al., 2020; Du et al., 2016; Gage & Cooper, 2017; 

Galletti et al., 2019) 

 Aggregation index 

(AI) 

𝐴𝐼

= [∑(
𝑔𝑖𝑖

𝑚𝑎𝑥 − 𝑔𝑖𝑖
)𝑃𝑖

𝑚

𝑖=1

] (100) 

It equals the number of like adjacencies divided by 

the theoretical maximum possible number of like 

adjacencies for that class summed over each class 

for the entire landscape. The metric is based on he 

adjacency matrix and the single-count method. 

0 <= AI <= 100 

Equals 0 for maximally disaggregated and 100 for 

maximally aggregated classes. 

8 

 (Gage & Cooper, 2017; A. Guo et al., 2020; Ma & Peng, 

2022; X. Wang et al., 2021; Wu et al., 2021; Yang et al., 2022; 

Zhao et al., 2020) 

 Splitting index 

(SPLIT) 
𝑆𝑃𝐿𝐼𝑇 =

𝐴2

∑ ∑ 𝑎𝑖𝑗
2𝑛

𝑗=1
𝑚
𝑖=1

 
It describes the number of patches if all patches the 

landscape would be divided into equally sized 

patches. 

1 <= SPLIT <= Number of cells squared 

Equals SPLIT = 1 if only one patch is present. Increases as 

the number of patches of class i increases and is limited if 

all cells are a patch 

1 

 (X. Wang et al., 2021) 
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Metric category Landscape metric Calculation# Description Range Frequency in reviewed papers 

 Landscape shape 

index (LSI) 
𝐿𝑆𝐼 =

𝐸

min𝐸
 

It is the ratio between the actual landscape edge 

length and the hypothetical minimum edge length. 

The minimum edge length equals the edge length if 

only one patch would be present. 

LSI≥1 

= 1 when only one squared patch is present. Increases, 

without limit, as the length of the actual edges increases, 

i.e. the patches become less compact. 

15 

 (Bera et al., 2022; Cheng et al., 2015; Connors et al., 2012; 

Das et al., 2020; Gage & Cooper, 2017; T. Li et al., 2020; Li et 

al., 2017; H. Liu & Q. H. Weng, 2009; Rakoto et al., 2021; X. 

Wang et al., 2021; Weber et al., 2014; Wu et al., 2021; Wu et 

al., 2019; Yang et al., 2022; Yu et al., 2020) 

 Patch cohesion index 

(COHESION) 

𝐶𝑂𝐻𝐸𝑆𝐼𝑂𝑁

= 1 − (
∑ ∑ 𝑝𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1

∑ ∑ 𝑝𝑖𝑗
𝑛
𝑗=1 √𝑎𝑖𝑗

𝑚
𝑖=1

)

∗ (1 −
1

√𝑍
)
−1

∗ 100 

It characterizes the connectedness of patches in the 

total landscape. It can be used to assess if patches 

are located aggregated or rather isolated and 

thereby COHESION gives information about the 

configuration of the landscape. 

0 < COHESION < 100 

Approaches COHESION = 0 if patches become more 

isolated. Increases if patches become more aggregated. 

1 

 (H. Liu & Q. H. Weng, 2009; Sun et al., 2022) 

 Number of patches 

(NP) 

𝑁𝑃 = 𝑁 It describes the fragmentation of the landscape, 

however, does not necessarily contain information 

about the configuration or composition of the 

landscape. 

Equals NP = 1 when only one patch is present and 

increases, without limit, as the number of patches increases 

4 

 (Das et al., 2020; Gage & Cooper, 2017; Ma & Peng, 2022; 

Yang, He, Wang, et al., 2017) 

 Patch density (PD) 
𝑃𝐷 =

𝑁

𝐴
∗ 10000 ∗ 100 

It describes the fragmentation the landscape, 

however, does not necessarily contain information 

about the configuration or composition of the 

landscape. It is standardized to the area and 

comparisons among landscapes with different total 

area are possible. 

PD > 0 

Increases as the landscape gets patchier. Reaches its 

maximum if every cell is a different patch. 

19 

 (Bera et al., 2022; Cheng et al., 2015; Connors et al., 2012; 

Das et al., 2020; Du et al., 2016; Gage & Cooper, 2017; 

Galletti et al., 2019; A. Guo et al., 2020; B. Li et al., 2020; Li 

et al., 2017; Ma & Peng, 2022; Rakoto et al., 2021; X. Wang et 

al., 2021; Y. Wang et al., 2021; Weber et al., 2014; Wu et al., 

2021; Yu et al., 2020; Y. Zhang et al., 2022; Zhao et al., 2020) 

 Landscape division 

index (DIVISION) 

𝐷𝐼𝑉𝐼𝑆𝐼𝑂𝑁

= (1 − ∑∑(
𝑎𝑖𝑗

𝐴
)
2

𝑛

𝑗=1

𝑚

𝑖=1

) 

It can be in as the probability that two randomly 

selected cells are not located in the same patch. 

0 <= Division < 1 

Equals DIVISION = 0 if only one patch is present. 

Approaches DIVISION = 1 if all patches of class i are 

single cells. 

3 

 (Gage & Cooper, 2017; Y. Wang et al., 2021; Wu et al., 2019) 

 Effective mesh size 

(MESH) 
𝑀𝐸𝑆𝐻 =

∑ ∑ 𝑎𝑖𝑗
2𝑛

𝑗=1
𝑚
𝑖=1

𝐴
∗

1

10000
 

Because each patch is squared before the sum is 

calculated and the sum is standardized by the total 

landscape area, MESH is a relative measure of 

patch structure. 

cell size / total area <= MESH <= total area 

Equals cell size/total area if class covers only one cell and 

equals total area if only one patch is present. 

1 

 (Yang et al., 2022) 

 Euclidean nearest 

neighbor distance 

distribution 

(ENN__MN) 

𝐸𝑁𝑁_𝑀𝑁

= 𝑚𝑒𝑎𝑛(𝐸𝑁𝑁[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

where, 

𝐸𝑁𝑁 = ℎ𝑖𝑗 

 

It summarizes the total landscape as the mean of 

each patch. 

ENN_MN> 0 

= 0 as the distance to the nearest neighbor decreases, i.e. 

patches in the total landscape are more aggregated. 

4 

 (Cheng et al., 2015; Rakoto et al., 2021; Weber et al., 2014; 

Wu et al., 2021) 

 Proximity index 

distribution (PROX) 𝑃𝑅𝑂𝑋 = ∑
𝑎𝑖𝑗𝑠

ℎ𝑖𝑗𝑠

𝑛

𝑠=1

 

 

It summarizes the total landscape as the mean of 

each patch belonging. 

PROX_≥0 

= 0 if all patches within the specified search radius. It 

increases as patches of the corresponding patch type 

become less isolated and the patch type becomes less 

fragmented in distribution. 

1 

 (H. Liu & Q. H. Weng, 2009) 

* Confirmed by personal correspondence with the corresponding authors. # Calculation formulas and descriptions are adopted from McGarigal et al. (2012) and https://r-spatialecology.github.io/landscapemetrics/index.html (accessed Oct. 2022). A area, p perimeter, 

𝒏𝒊𝒋
𝒄𝒐𝒓𝒆 core area of patch ij based on specified edge depths, 𝒈𝒊𝒊 number of like adjacencies between pixels of class type i based on the double-count method, 𝒆𝒊𝒌 total length of edge in landscape between patch types i and k, 𝒅𝒊𝒌 dissimilarity between patch types i 

and k, 𝒄𝒊𝒋𝒌 joining between patch j and k of the corresponding patch type based on a user specified threshold distance, 𝐦𝐢𝐧𝒆𝒊 minimum total length of edge of class i in terms of number of cell surfaces, 𝒉𝒊𝒋𝒔 distance between patch ijs and patch ijs, based on patch 

edge-to-edge distance computed from cell center to cell center. 

  

https://r-spatialecology.github.io/landscapemetrics/index.html
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Table B4 Studies that have included 3D metrics and their key findings 

Citation 3D metrics Key findings 

Quantify buildings Quantify UGS  

 (C. Yang et al., 2021) Mean building height, building height index, mean building volume, 

building volume index, floor area ratio, building height variance 

NA 2D metrics were found contributing more than 3D metrics to LST. 

 (Q. Wu et al., 2022) Root mean square deviation of a surface, skewness of surface height 

distribution, mean height, maximum height, sky view factor 

NA Results of multiple regression and random forest models reveal that 3D metrics better explain LST variance than 2D metrics. 

 (Chen et al., 2020) NA Mean tree height, maximum height of tree canopy, 

variance of tree canopy height, amplitude of tree 

canopy height, normalized tree canopy height 

variance 

2D composition metrics and 3D metrics jointly may best explain LST variance both during daytime and nighttime. 

 (Yuan et al., 2021) Building coverage ratio, mean building height, floor area ratio, sky 

view factor, low-rise buildings area ratio, mid-rise buildings area 

ratio, high-rise building area ratio 

NA Building metrics were found contributing more than UGS metrics. 

Building coverage ratio was found contributing the most, followed by high-rise building area ratio and low-rise building area 

ratio. 

 (J. Chen et al., 2021) Mean/maximum/variance height of buildings, normalized of building 

height, sky view factor achieved by buildings, building height value 

at 10th percentile, building height value at 90th percentile 

Mean/maximum/variance of tree canopy height, 

normalized tree canopy height variance, 10th 

percentile tree height value, 90th percentile tree 

height value 

During daytime, 2D metrics were found contributing more than 3D metrics. Opposite for nighttime. 

During daytime, 3D metrics of trees have better performance than those of buildings. Opposite for nighttime. 

 (Gage & Cooper, 2017) Building height Tree height Contribution of 3D metrics varies among land cover clusters. 

 (Huang & Wang, 2019) Shape coefficient, mean height, height variance, normalized height 

variance, sky view factor 

NA 2D metrics were found contributing more than 3D metrics. Among 3D metrics, mean height and sky view factor were found 

the most prominent. 

Contribution of 3D landscape metrics of building varied among urban function zones and seasons, with the strongest in 

winter. 

 (W.-B. Wu et al., 2022) Mean building height, volume of building Mean tree height, volume of tree 3D metrics effectively improve the interpretation of SRHII. 

Landscape metrics’ significance to SRHII varies across climate zones, seasons and day and night. 

 (Yu et al., 2020) Class level: volume, ED, PROX, CO, PD, ten-point average height, summit curvature of a surface, density of summit 

Landscape level: diversity, LSI, FRAC, PD, mean of height, root mean square of height, ten-point average height, root-

mean-square slope of a surface, skewness of surface height distribution, kurtosis of surface height distribution, developed 

interfacial area ratio, summit curvature of a surface, density of summit 

3D metrics may well explain LST without including 2D metrics.  

For vegetation coverage, 3D metrics can be treated as 2D metrics. 

 (Zeng et al., 2022) Mean height, mean height standard deviation, high ratio, SHDI Building metrics demonstrate greater influence. Varies by building and vegetation coverage. 

 (J. Chen, W. Zhan, et al., 

2022)SEM model 

SVFbuilding, mean height, variance of building height, maximum 

height of buildings 

Variance of tree height, mean tree canopy height, 

maximum height of tree canopy 

2D and 3D building structures showed much stronger indirect impacts on LST through horizontal and vertical tree structures 

 (H. Zhang et al., 2022) Mean building height, mean aspect ratio Green volume Interactions of 3D green volume and 2D LMs were significant. (PLSR interaction) 

 (X. Chen et al., 2022) mean height, mean volume, floor area ratio NA 2D landscape metrics explained more of the variation in LST than 3D landscape metrics in spring, summer, and autumn, 

while 3D landscape metrics had a stronger effect on LST in winter. 

 (J. Chen, P. Du, et al., 2022) Maximum building height, mean building height, normalized variance 

of building height, 10/90th percentile of building height 

Maximum tree height, mean tree height, 

normalized variance of tree height, 10/90th 

percentile of tree height 

2D and 3D factors jointly demonstrated the best performaces. Multilevel model for better performance than OLS model. 

 (Lyu et al., 2023) Building height Green volume, LAI 3D green volume demonstrates high relative importance. 
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Appendix C Summary of meta-analysis results of Pearson correlation between patch, 

class level landscape metrics and temperature indicators 

 

Table C1 and C2 are summaries of meta-analysis results of Pearson correlation between patch and class 

level landscape metrics (LMs) and temperature indicators respectively. Detailed results of each combination of 

landscape metric and temperature indicator are shown in Appendix D. 

The studies used for meta-analysis are identical to those demonstrated in Fig. 6 and Fig. 8. To ensure 

homogeneity among synthesized studies, all extracted Pearson correlations were calculated by using temperature 

indicators based on daytime LST. Their full information can be referred to in Appendix A. 

 

Table C1 Meta-analysis results of Pearson correlation between patch-level LMs and temperature indicators 

LMs 
Temperature 

indicators 

Sub-group 

(Climate Zone) 

Studies 

included 
Total sample size Random effects model Heterogeneity 

PARA CE C 3 342 [-0.83,0.88] p<0.01 

  D 1 300 N/A N/A 

  Overall 4 642 [-0.77,0.69] p<0.01 

 CI A 1 4 N/A N/A 

  C 4 382 [-0.80,0.14] p<0.01 

  D 2 333 [-0.71,-0.59] p=0.52 

  Overall 7 719 [-0.76,-0.21] p<0.01 

 LST statistics C 3 82 [0.17,0.63] p=0.21 

  D 1 300 N/A N/A 

  Overall 4 382 [0.30,0.47] p=0.35 

SHAPE CE A 4 532 [-0.01,0.28] p=0.05 

  B 1 15 N/A N/A 

  C 3 391 [-0.10,0.56] p<0.01 

  Overall 8 938 [-0.01,0.30] p<0.01 

 CI A 3 270 [-0.13,0.11] p=0.95 

  B 1 15 N/A N/A 

  C 5 466 [0.05.0.49] p<0.01 

  Overall 9 751 [-0.07,0.30] p<0.01 

 LST statistics C 3 668 [-0.45,-0.04] p<0.01 

  D 4 966 [-0.33,-0.21] p=0.80 

  Overall 7 1634 [-0.32,-0.18] p=0.03 

Note: Results marked in yellow are constantly positive or negative pooled Pearson correlation with 95% confidence interval, and 

homogenous groups. Same below.  
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Table C2 Meta-analysis of Pearson correlation of class-level LMs and mean LST 

LMs UGS type 
Sub-group 

(Climate Zone) 

Studies 

included 
Total sample size Random effects model Heterogeneity 

AREA_MN Vegetation A 4 280 [-0.57,-0.29] p=0.11 

  B 2 1025 [-0.72,0.58] p<0.01 

  C 4 7869 [-0.30,-0.26] p=0.91 

  D 4 7608 [-0.02,0.90] p<0.01 

  Overall 14 16782 [-0.35,0.31] p<0.01 

 Tree A 1 40 N/A N/A 

  C 1 25 N/A N/A 

  Overall 2 65 [-0.79,0.08] p=0.03 

 Grass A 1 40 N/A N/A 

  C 1 25 N/A N/A 

  Overall 2 65 [-0.20,0.30] p=0.36 

LPI Vegetation B 3 1132 [-0.51,0.44] p<0.01 

  C 2 7629 [-0.47,-0.44] p=0.39 

  D 3 7599 [-0.61,-0.39] p=0.01 

  Overall 8 16360 [-0.56,-0.11] p<0.01 

 Tree A 1 40 N/A N/A 

  B 1 66 N/A N/A 

  C 2 2275 [-0.73,-0.27] p=0.10 

  D 1 235 N/A N/A 

  Overall 5 2616 [-0.61,-0.19] p<0.01 

 Grass A 1 40 N/A N/A 

  C 2 2275 [-0.26,-0.18] p=0.35 

  D 1 235 N/A N/A 

  Overall 4 2550 [-0.24,0.09] p<0.01 

ED Vegetation B 1 1000 N/A N/A 

  C 4 7835 [-0.49,-0.46] p=0.76 

  D 4 7608 [-0.54,0.67] p<0.01 

  Overall 9 16443 [-0.55,0.11] p<0.01 

 Tree B 3 634 [-0.60,-0.49] p=0.92 

  C 2 2275 [-0.53,0.38] p=0.02 

  D 1 235 N/A N/A 

  Overall 6 3144 [-0.53,-0.13] p<0.01 

 Grass B 1 500 N/A N/A 

  C 1 2250 N/A N/A 

  D 1 235 N/A N/A 

  Overall 3 2985 [-0.43,0.07] p<0.01 

SHAPE_MN Vegetation A 4 280 [-0.65,-0.33] p=0.02 
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LMs UGS type 
Sub-group 

(Climate Zone) 

Studies 

included 
Total sample size Random effects model Heterogeneity 

  B 1 1000 N/A N/A 

  C 5 410 [-0.53,-0.30] p=0.08 

  D 3 327 [0.03,0.85] p<0.01 

  Overall 13 2017 [-0.48,0.09] p<0.01 

 Tree A 1 40 N/A N/A 

  C 1 2250 N/A N/A 

  Overall 2 2290 [-0.34,-0.26] p=0.50 

 Grass A 1 40 N/A N/A 

  C 1 2250 N/A N/A 

  Overall 2 2290 [-0.57,0.78] p<0.01 

LSI Vegetation B 1 107 N/A N/A 

  C 1 25 N/A N/A 

  D 5 645 [-0.06,0.52] p<0.01 

  Overall 7 777 [-0.25,0.39] p<0.01 

 Tree B 1 500 N/A N/A 

  C 1 25 N/A N/A 

  D 1 58 N/A N/A 

  Overall 3 583 [-0.48,0.11] p=0.02 

 Grass B 1 500 N/A N/A 

  D 1 58 N/A N/A 

  Overall 2 558 [-0.27,-0.11] p=0.47 

AI Vegetation A 4 280 [-0.77,-0.33] p<0.01 

  B 2 1025 [-0.45,0.08] p=0.14 

  C 5 410 [-0.61,-0.09] p<0.01 

  D 2 318 [-0.77,-0.10] p<0.01 

  Overall 13 2033 [-0.58,-0.30] p<0.01 

 Tree A 1 40 N/A N/A 

  B 1 66 N/A N/A 

  D 1 235 N/A N/A 

  Overall 3 341 [-0.58,-0.03] p<0.01 

 Grass A 1 40 N/A N/A 

  D 1 235 N/A N/A 

  Overall 2 275 [-0.19,0.21] p=0.19 

COHESION Vegetation C 1 60 N/A N/A 

  D 1 158 N/A N/A 

  Overall 2 218 [-0.69,-0.08] p=0.01 

 Tree B 1 66 N/A N/A 

  C 1 25 N/A N/A 

  Overall 2 91 [-0.94,-0.40] p<0.01 
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LMs UGS type 
Sub-group 

(Climate Zone) 

Studies 

included 
Total sample size Random effects model Heterogeneity 

PD Vegetation A 1 100 N/A N/A 

  C 6 566 [-0.37,-0.11] p=0.03 

  D 5 645 [-0.54,0.24] p<0.01 

  Overall 12 1311 [-0.40,-0.05] p<0.01 

 Tree B 1 500 N/A N/A 

  C 3 2300 [-0.77,0.35] p<0.01 

  D 2 293 [0.04,0.33] p=0.25 

  Overall 6 3093 [-0.46,0.23] p<0.01 

 Grass B 1 500 N/A N/A 

  C 2 2275 [-0.31,0.41] p=0.06 

  D 2 293 [-0.53,0.28] p<0.01 

  Overall 5 3069 [-0.31,0.13] p<0.01 

 

 



Study

Common effect model
Random effects model

Heterogeneity: I2 = 77% , τ2 = 0.0628 , p  < 0.01
Test for subgroup differences (fixed effect): χ2

2 = 19.50, df = 2  (p  < 0.01 )
Test for subgroup differences (random effects): χ2

2 = 9.11, df = 2  (p  = 0.01 )

ClimateZone1 = B

ClimateZone1 = C

ClimateZone1 = A

Common effect model

Common effect model

Random effects model

Random effects model

Heterogeneity: I2 = 73% , τ2 = 0.0543 , p  < 0.01

Heterogeneity: I2 = 0% , τ2 = 0 , p  = 0.95

 Pramanik & Punia, 2019

 Xiang Sun et al., 2020
 X. Tan et al., 2021
 Cai et al., 2022
 X. Chen et al., 2021
 Du et al., 2017

 Li et al., 2022
 Li et al., 2022
 Li et al., 2022

Total
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−−

62.3%

36.0%

−−
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14.4%
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Appendix D Meta-analysis of Pearson correlation patch, class level landscape 
metrics and temperature indicators

Fig. D1 Forest plot of Pearson correlation between patch-level SHAPE and cooling intensity
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Study

Common effect model
Random effects model

χ2
2 = 3.87, df = 2  (p  = 0.14 )

2 = 0.0381 , p  < 0.01Heterogeneity: I2 = 75% , τ
Test for subgroup differences (fixed effect): 
Test for subgroup differences (random effects): χ2

2 = 3.76, df = 2  (p  = 0.15 )

ClimateZone = B

ClimateZone = A

ClimateZone = C

Common effect model

Common effect model

Random effects model

Random effects model

Heterogeneity: I2 = 62% , τ2 = 0.0135 , p  = 0.05

Heterogeneity: I2 = 88% , τ2 = 0.0833 , p  < 0.01

 Pramanik & Punia, 2019

 Li et al., 2022
 Li et al., 2022
 Li et al., 2022
 Shah et al., 2021

 Cai et al., 2022
 X. Tan et al., 2021
 Du et al., 2017

Total

938

532
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Fig. D2 Forest plot of Pearson correlation between patch-level SHAPE and cooling extent
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Study

Common effect model
Random effects model

χ1
2 = 2.44, df = 1  (p  = 0.12 )

Heterogeneity: I2 = 58% , τ2 = 0.0063 , p  = 0.03
Test for subgroup differences (fixed effect): 
Test for subgroup differences (random effects): χ1

2 = 0.04, df = 1  (p  = 0.85 )

Climate Zone = C

Climate Zone = D

Common effect model

Common effect model

Random effects model

Random effects model

Heterogeneity: I2 = 82% , τ2 = 0.0317 , p  < 0.01

Heterogeneity: I2 = 0% , τ2 = 0 , p  = 0.80

 Du et al., 2017
 W. Zhou et al., 2022
 Shih, 2017

 W. Zhou et al., 2022
 Chen et al., 2014b
 Yang, He, Yu, et al., 2017
 W. Zhou et al., 2022

Total

1634
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 966
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 300

 300
 300
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 300
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[−0.19;  0.03]
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[−0.39; −0.18]
[−0.46;  0.00]

[−0.34; −0.12]
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3.9%
18.4%

Weight
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−0.6 −0.4 −0.2 0 0.2 0.4 0.6

Fig. D3 Forest plot of Pearson correlation between patch-level SHAPE and LST statistics
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Study

Common effect model
Random effects model

p  < 0.01
χ2

2 = 26.60, df = 2  (p  < 0.01 )
Heterogeneity: I2 = 89% , τ2 = 0.2153 ,
Test for subgroup differences (fixed effect): 
Test for subgroup differences (random effects): χ2

2 = 0.93, df = 2  (p  = 0.63 )

Climate Zone = C

Climate Zone = D

Climate Zone = A

Common effect model

Common effect model

Random effects model

Random effects model

Heterogeneity: I2 = 88% , τ2 = 0.3637 , p  < 0.01

Heterogeneity: I2 = 0% , τ2 = 0 , p  = 0.52

 Wang et al., 2018
 Shih, 2016
 Cai et al., 2022
 Wang et al., 2022

 Ren et al., 2013
 W. Liu et al., 2022

 Ekwe et al., 2020

Total

719

382
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 40

300
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42.6%
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Fig. D4 Forest plot of Pearson correlation between patch-level PARA and cooling intensity
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Study

Common effect model
Random effects model

Heterogeneity: I2 = 96% , τ2 = 0.8816 , p  < 0.01
Test for subgroup differences (fixed effect): χ1

2 = 25.18, df = 1  (p  < 0.01 )
Test for subgroup differences (random effects): χ1

2 = 0.83, df = 1  (p  = 0.36 )

ClimateZone1 = C

ClimateZone1 = D

Common effect model
Random effects model
Heterogeneity: I2 = 96% , τ2 = 1.2358 , p  < 0.01

 Wang et al., 2022
 Cai et al., 2022
 Wang et al., 2018

 W. Liu et al., 2022

!"#!$%&!'(!)*#+!,-,,!"#!$%&!'(!)*#+!,-,,

Total
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Study

Common effect model
Random effects model

χ1
2 = 0.16, df = 1  (p  = 0.69 )

Heterogeneity: I2 = 8% , τ2 < 0.0001 , p  = 0.35
Test for subgroup differences (fixed effect): 
Test for subgroup differences (random effects): χ1

2 = 0.12, df = 1  (p  = 0.73 )

Climate Zone = C

Climate Zone = D

Common effect model
Random effects model
Heterogeneity: I2 = 36% , τ2 = 0.0214 , p  = 0.21

 Wang et al., 2018
 Shih, 2016
 Wang et al., 2022

 Chen et al., 2014b

Total

382

 82
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Fig. D5 Forest plot of Pearson correlation between patch-level PARA and cooling extent

Fig. D6 Forest plot of Pearson correlation between patch-level PARA and LST statistics
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Study

Common effect model
Random effects model

Heterogeneity: I2 = 99% , τ2 = 0.4194 , p  < 0.01
Test for subgroup differences (fixed effect): χ3

2 = 262.04, df = 3  (p  < 0.01 )
Test for subgroup differences (random effects): χ3

2 = 11.24, df = 3  (p  = 0.01 )

ClimateZone = A

ClimateZone = B

ClimateZone = C

ClimateZone = D

Common effect model

Common effect model

Common effect model

Common effect model

Random effects model

Random effects model

Random effects model

Random effects model

Heterogeneity: I2 = 51% , τ2 = 0.0159 , p  = 0.11

Heterogeneity: I2 = 93% , τ2 = 0.2981 , p  < 0.01

Heterogeneity: I2 = 0% , τ2 = 0 , p  = 0.91

Heterogeneity: I2 = 99% , τ2 = 0.5863 , p  < 0.01

 Estoque et al., 2017
 Estoque et al., 2017
 Estoque et al., 2017
 Simwanda et al., 2019

 Lu et al., 2020
 Athukorala & Murayama, 2021

 Ma & Peng, 2022
 Simwanda et al., 2019
 Simwanda et al., 2019
 Simwanda et al., 2019
 L. Yang et al., 2021
 He et al., 2021
 Tang et al., 2023

 Li et al., 2013
 Li et al., 2013
 Li et al., 2013
 He et al., 2021

Total
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Fig. D7 Forest plot of Pearson correlation between class-level AREA_MN of urban vegetation coverage and 
mean LST
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Study

Common effect model
Random effects model

Heterogeneity: I2 = 79% , τ2 = 0.1392 , p  = 0.03
Test for subgroup differences (fixed effect): χ1

2 = 4.84, df = 1  (p  = 0.03 )
Test for subgroup differences (random effects): χ1

2 = 4.84, df = 1  (p  = 0.03 )

ClimateZone = A

ClimateZone = C

 Athukorala & Murayama, 2020

 Zhou et al., 2017
 Zhou et al., 2017
 Wang et al., 2023
 Wang et al., 2023
 Wang et al., 2023
 Karunaratne et al., 2022

Total
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Study

Common effect model
Random effects model

Heterogeneity: I2 = 0% , τ2 = 0 , p  = 0.36
Test for subgroup differences (fixed effect): χ1

2 = 0.85, df = 1  (p  = 0.36 )
Test for subgroup differences (random effects): χ1

2 = 0.85, df = 1  (p  = 0.36 )

ClimateZone = A

ClimateZone = C

 Athukorala & Murayama, 2020

 Wang et al., 2020
 Wang et al., 2020
 Wang et al., 2020
 Karunaratne et al., 2022

Total
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Fig. D8 Forest plot of Pearson correlation between class-level AREA_MN of tree canopy coverage and mean 
LST

Fig. D9 Forest plot of Pearson correlation between class-level AREA_MN of grassland coverage and mean LST
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Study

Common effect model
Random effects model

Heterogeneity: I2 = 99% , τ2 = 0.1349 , p  < 0.01
Test for subgroup differences (fixed effect): χ2

2 = 649.44, df = 2  (p  < 0.01 )
Test for subgroup differences (random effects): χ2

2 = 3.74, df = 2  (p  = 0.15 )

ClimateZone = A

ClimateZone = B

ClimateZone = C

ClimateZone = D

Common effect model

Common effect model

Common effect model

Random effects model

Random effects model

Random effects model

Heterogeneity: I2 = 92% , τ2 = 0.1963 , p  < 0.01

Heterogeneity: I2 = 0% , τ2 = 0 , p  = 0.39

Heterogeneity: I2 = 77% , τ2 = 0.0139 , p  = 0.01

 Masoudi & Tan, 2019
 Masoudi et al., 2019
 Masoudi et al., 2019
 Masoudi et al., 2019

 Lu et al., 2020
 Li et al., 2018
 Athukorala & Murayama, 2021
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 B. Li et al., 2020
 Ma & Peng, 2022
 Guo et al., 2019
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 Ren et al., 2014
 He et al., 2021
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Fig. D10 Forest plot of Pearson correlation between class-level LPI of urban vegetation coverage and mean LST
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Study

Common effect model
Random effects model

Heterogeneity: I2 = 90% , τ2 = 0.0694 , p  < 0.01
Test for subgroup differences (fixed effect): χ3

2 = 36.83, df = 3  (p  < 0.01 )
Test for subgroup differences (random effects): χ3

2 = 21.93, df = 3  (p  < 0.01 )

ClimateZone = A

ClimateZone = B

ClimateZone = C

ClimateZone = D

Common effect model
Random effects model
Heterogeneity: I2 = 64% , τ2 = 0.0403 , p  = 0.10

 Athukorala & Murayama, 2020

 Rhee et al., 2014
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 J. Chen et al., 2021
 Zhou et al., 2017
 Zhou et al., 2017
 Zhou et al., 2011
 Zhou & Cao, 2020
 Wang et al., 2023
 Wang et al., 2023
 Wang et al., 2023
 Karunaratne et al., 2022

 Yao et al., 2020
 X. Wang et al., 2021
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Fig. D11 Forest plot of Pearson correlation between class-level LPI of tree canopy coverage and mean LST

32 33



Study

Common effect model
Random effects model

Heterogeneity: I2 = 80% , τ2 = 0.0175 , p  < 0.01
Test for subgroup differences (fixed effect): χ2

2 = 14.24, df = 2  (p  < 0.01 )
Test for subgroup differences (random effects): χ2

2 = 14.24, df = 2  (p  < 0.01 )

ClimateZone = A

ClimateZone = C
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Common effect model
Random effects model
Heterogeneity: I2 = 0% , τ2 = 0 , p  = 0.35
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Fig. D12 Forest plot of Pearson correlation between class-level LPI of grassland coverage and mean LST
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Study

Common effect model
Random effects model

Heterogeneity: I2 = 99% , τ2 = 0.3041 , p  < 0.01
Test for subgroup differences (fixed effect): χ2

2 = 147.10, df = 2  (p  < 0.01 )
Test for subgroup differences (random effects): χ2

2 = 6.38, df = 2  (p  = 0.04 )
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Fig. D13 Forest plot of Pearson correlation between class-level ED of urban vegetation coverage and mean LST
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Fig. D14 Forest plot of Pearson correlation between class-level ED of tree canopy coverage and mean LST

Study

Common effect model
Random effects model

Heterogeneity: I2 = 93% , τ2 = 0.0728 , p  < 0.01
Test for subgroup differences (fixed effect): χ2

2 = 61.78, df = 2  (p  < 0.01 )
Test for subgroup differences (random effects): χ2

2 = 44.92, df = 2  (p  < 0.01 )
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ClimateZone = C

ClimateZone = D

Common effect model

Common effect model
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Heterogeneity: I2 = 0% , τ2 = 0 , p  = 0.92

Heterogeneity: I2 = 83% , τ2 = 0.1104 , p  = 0.02
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Fig. D15 Forest plot of Pearson correlation between class-level ED of grassland coverage and mean LST

Study

Common effect model
Random effects model

Heterogeneity: I2 = 95% , τ2 = 0.0539 , p  < 0.01
Test for subgroup differences (fixed effect): χ2

2 = 42.27, df = 2  (p  < 0.01 )
Test for subgroup differences (random effects): χ2

2 = 42.27, df = 2  (p  < 0.01 )

ClimateZone = B
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ClimateZone = D
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Fig. D16 Forest plot of Pearson correlation between class-level SHAPE_MN of urban vegetation coverage and mean LST

Study

Common effect model
Random effects model

χ3
2 = 277.54, df = 3  (p  < 0.01 )

χ3
2 = 23.76, df = 3  (p  < 0.01 )
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Common effect model

Random effects model

Random effects model

Random effects model

Heterogeneity: I2 = 69% , τ2 = 0.0350 , p  = 0.02
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Fig. D17 Forest plot of Pearson correlation between class-level SHAPE_MN of tree canopy coverage and mean LST

Fig. D18 Forest plot of Pearson correlation between class-level SHAPE_MN of grassland coverage and mean LST

Study

Common effect model
Random effects model

Heterogeneity: I2 = 0% , τ2 = 0 , p  = 0.50
Test for subgroup differences (fixed effect): χ1

2 = 0.46, df = 1  (p  = 0.50 )
Test for subgroup differences (random effects): χ1

2 = 0.46, df = 1  (p  = 0.50 )

ClimateZone = A

ClimateZone = C

 Athukorala & Murayama, 2020

 Chen et al., 2020
 J. Chen et al., 2021
 Zhao et al., 2020
 Zhou et al., 2017
 Zhou et al., 2017
 Zhou et al., 2011
 Zhou & Cao, 2020
 Wang et al., 2023
 Wang et al., 2023
 Wang et al., 2023

Total

2290

  40

.

.

.

.

.
2250

.

.

.

.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

Correlation COR

−0.30
−0.30

−0.40

0.16
0.26

−0.30
−0.75
−0.34
−0.30
−0.13
−0.24
−0.13

0.19

95%−CI

[−0.34; −0.26]
[−0.34; −0.26]

[−0.63; −0.10]

[−0.34; −0.26]

(common)

100.0%
−−

1.6%

0.0%
0.0%
0.0%
0.0%
0.0%

98.4%
0.0%
0.0%
0.0%
0.0%

Weight
(random)

−−
100.0%

1.6%

0.0%
0.0%
0.0%
0.0%
0.0%

98.4%
0.0%
0.0%
0.0%
0.0%

Weight

Study

Common effect model
Random effects model

Heterogeneity: I2 = 96% , τ2 = 0.3568 , p  < 0.01
Test for subgroup differences (fixed effect): χ1
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Test for subgroup differences (random effects): χ1

2 = 26.98, df = 1  (p  < 0.01 )
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Fig. D19 Forest plot of Pearson correlation between class-level LSI of urban vegetation coverage and mean LST

Study

Common effect model
Random effects model

Heterogeneity: I2 = 95% , τ2 = 0.1873 , p  < 0.01
Test for subgroup differences (fixed effect): χ2

2 = 39.98, df = 2  (p  < 0.01 )
Test for subgroup differences (random effects): χ2

2 = 11.82, df = 2  (p  < 0.01 )
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Random effects model
Heterogeneity: I2 = 94% , τ2 = 0.1261 , p  < 0.01
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Fig. D20 Forest plot of Pearson correlation between class-level LSI of tree canopy coverage and mean LST

Fig. D21 Forest plot of Pearson correlation between class-level LSI of grassland coverage and mean LST

Study

Common effect model
Random effects model

Heterogeneity: I2 = 75% , τ2 = 0.0611 , p  = 0.02
Test for subgroup differences (fixed effect): χ2

2 = 8.16, df = 2  (p  = 0.02 )
Test for subgroup differences (random effects): χ2

2 = 8.16, df = 2  (p  = 0.02 )

ClimateZone = B
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Random effects model

Heterogeneity: I2 = 0% , τ2 = 0 , p  = 0.47
Test for subgroup differences (fixed effect): χ1

2 = 0.52, df = 1  (p  = 0.47 )
Test for subgroup differences (random effects): χ1

2 = 0.52, df = 1  (p  = 0.47 )
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Fig. D22 Forest plot of Pearson correlation between class-level AI of urban vegetation coverage and mean LST

Study

Common effect model
Random effects model

Heterogeneity: I2 = 93% , τ2 = 0.0968 , p  < 0.01
Test for subgroup differences (fixed effect): χ3

2 = 86.27, df = 3  (p  < 0.01 )
Test for subgroup differences (random effects): χ3

2 = 5.11, df = 3  (p  = 0.16 )
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Common effect model
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Random effects model
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Heterogeneity: I2 = 89% , τ2 = 0.1043 , p  < 0.01

Heterogeneity: I2 = 54% , τ2 = 0.0269 , p  = 0.14
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Fig. D23 Forest plot of Pearson correlation between class-level AI of tree canopy coverage and mean LST

Fig. D24 Forest plot of Pearson correlation between class-level AI of grassland coverage and mean LST
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Fig. D25 Forest plot of Pearson correlation between class-level COHESION of urban vegetation coverage and mean LST

Fig. D26 Forest plot of Pearson correlation between class-level COHESION of tree canopy coverage and mean LST
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Fig. D27 Forest plot of Pearson correlation between class-level PD of urban vegetation coverage and mean LST
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Fig. D28 Forest plot of Pearson correlation between class-level PD of tree canopy coverage and mean LST
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Fig. D29 Forest plot of Pearson correlation between class-level PD of grassland coverage and mean LST
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