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Appendices 1 

Appendix A Microclimate and background weather conditions during survey 2 

Table A1 Microclimate conditions during survey and background weather conditions 3 

Date 
Strat 

time 

  Microclimate condition during measurement 1 Weather condition of the day 3 

Ta (°C)  Rh (%)  Tmrt (°C) v_mean 

(m/s) 

VHD 

warning 2 

Ta (°C) Rh_mean 

(%) 

Cloud_mean  

(%) Mean Min Max  Mean Min Max  Mean Min Max Max Min Mean 

07/07 11:25 32.54  31.53  33.27   75.10  73.14  78.03   42.71  39.97  45.17  1.20  √ 33.4 29.0 30.4 76 71 

07/08 11:14 32.75  31.77  34.14   73.25  67.85  76.36   44.34  31.37  61.73  1.09  √ 33.2 28.8 30.4 76 48 

07/14 11:28 34.54  33.51  35.82   59.55  55.24  62.95   46.72  32.56  65.64  1.22  √ 33.8 28.5 31.3 71 68 

07/28 15:13 35.30  34.71  36.86   57.40  52.25  60.46   43.10  35.03  74.07  1.20  √ 
34.7 28.9 31.5 72 86 

07/28 15:48 35.35  34.65  36.78   57.22  53.37  61.34   41.15  33.86  56.72  0.94  √ 

07/31 9:44 31.95  31.36  32.80   74.59  70.38  77.88   45.22  32.42  62.07  0.99    
32.5 26.5 29.1 84 85 

07/31 10:30 32.06  31.52  33.34   72.41  66.60  76.83   42.61  30.57  59.96  0.96    

08/02 10:23 33.23  32.84  34.20   57.88  52.87  61.13   45.09  30.19  64.32  0.97  √ 

34.6 27.9 30.4 70 52 08/02 10:54 33.45  32.72  34.42   55.11  51.11  58.58   40.06  32.14  63.39  1.10  √ 

08/02 11:35 34.09  33.09  35.01   51.54  47.43  53.76   45.74  32.49  59.68  1.51  √ 

08/03 10:28 33.15  32.32  34.34   61.01  57.64  63.23   45.42  31.72  62.36  1.18  √ 35.1 27.9 30.8 73 43 

08/05 13:20 33.93  32.79  34.98   70.94  66.61  74.65   45.94  31.68  70.16  0.81  √ 

33.0 28.3 30.4 79 84 

08/05 14:26 32.67  31.93  33.24   73.21  69.98  77.91   41.26  33.19  59.73  1.96  √ 

08/05 14:59 33.37  32.82  33.95   71.36  68.45  74.31   41.38  32.21  53.10  1.08  √ 

08/05 16:09 32.80  31.96  33.28   72.33  70.93  74.62   41.11  30.59  65.91  2.17  √ 

08/05 16:38 32.99  32.39  33.40   71.35  69.71  72.91   41.70  31.57  62.94  1.68  √ 

08/08 11:41 33.68  32.25  34.64   68.26  64.41  70.94   48.57  34.73  73.85  1.40  √ 33.3 28.9 30.3 74 69 

08/09 15:25 32.83  32.08  34.10   76.60  70.66  79.60   39.36  32.68  62.55  1.05  √ 
32.8 28.7 30.3 76 73 

08/09 15:56 32.42  31.64  32.96   78.02  75.52  80.16   42.16  32.06  61.96  1.27  √ 
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08/12 14:18 32.58  31.73  33.36   69.04  66.18  72.12   48.22  32.30  70.15  1.86    

32.1 26.6 29.0 79 86 08/12 14:53 31.89  31.47  32.23   73.24  72.16  75.85   39.57  31.51  59.95  1.20    

08/12 15:50 31.08  30.57  31.44   76.38  73.43  77.87   34.65  30.91  42.04  0.97    

08/15 14:42 32.10  30.78  33.66   75.95  71.22  79.36   38.83  30.54  72.74  1.28    

32.5 28.8 29.9 80 85 08/15 15:52 30.58  29.56  31.69   81.04  74.33  90.27   34.61  29.84  42.67  0.62    

08/15 16:23 31.07  30.82  31.37   78.65  76.77  81.39   34.15  30.08  43.87  0.77    

08/16 14:30 34.22  33.41  35.99   69.90  65.46  72.83   49.31  34.70  68.90  0.98  √ 

34.0 28.8 30.6 78 70 08/16 15:41 33.99  33.05  35.43   66.26  62.81  69.74   45.39  32.06  64.31  0.83  √ 

08/16 16:06 33.09  32.74  33.71   68.78  65.45  71.73   37.51  32.04  57.74  0.77  √ 

08/20 14:34 31.08  30.27  32.07   75.94  70.04  84.84   36.70  30.38  44.17  0.74    
31.5 28.4 29.7 80 86 

08/20 15:07 31.12  30.70  31.42   76.61  74.12  83.15   34.12  29.83  38.98  0.35    

08/21 14:50 31.06  30.71  31.25   79.40  76.70  86.85   33.78  30.46  38.57  0.76    

32.1 28.2 29.6 82 86 08/21 15:51 31.14  30.76  31.48   78.65  75.83  82.86   35.35  31.06  46.49  0.62    

08/21 16:16 30.93  30.76  31.20   77.48  75.83  79.05   32.10  30.48  34.54  0.79    

08/22 11:39 30.67  29.97  32.39   82.03  76.51  84.56   39.63  29.38  60.04  0.63    

33.0 28.0 30.0 79 88 

08/22 12:30 32.81  31.57  33.97   71.61  67.59  74.55   50.15  35.83  58.78  0.94    

08/22 12:58 32.36  31.85  32.86   71.51  69.31  74.00   36.08  31.97  48.65  1.00    

08/22 14:42 32.79  32.00  33.55   71.78  69.54  74.02   43.61  30.34  58.72  1.06    

08/22 15:11 32.71  32.19  33.52   71.50  69.71  73.72   46.29  31.22  60.18  0.94  √ 

08/26 10:39 30.33  29.37  30.95   82.89  77.46  88.83   33.56  28.32  37.06  0.40    32.8 27.9 29.7 83 88 

09/04 14:35 33.68  33.01  34.31   65.91  63.94  68.83   41.13  33.27  52.87  0.93  √ 
32.6 27.3 29.9 73 87 

09/04 15:07 33.17  32.63  34.02   67.58  64.77  70.48   33.41  30.85  35.88  0.53  √ 

09/13 13:13 29.52  28.90  30.17   84.80  81.33  89.34   36.91  28.65  53.92  0.92    
30.4 26.8 27.9 88 87 

09/13 13:41 28.90  28.57  29.25   86.02  84.89  87.64   31.83  28.15  37.47  1.52    

09/17 14:35 31.07  29.85  32.30   77.54  73.21  81.23   40.13  29.47  59.28  1.51    31.7 26.8 28.5 85 79 

09/19 11:13 32.07  31.30  33.34   67.43  62.61  70.62   36.86  29.99  55.43  0.68    33.5 27.3 29.5 79 48 

09/20 9:18 30.06  29.70  30.52   80.26  76.98  82.72   33.03  29.41  38.51  1.02  √ 
32.9 27.5 29.6 76 28 

09/20 10:31 30.92  30.03  32.01   76.41  72.20  79.82   38.90  29.21  63.08  1.21  √ 
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09/20 14:44 31.90  30.68  33.06   73.10  66.03  82.13   40.99  30.09  64.34  0.69  √ 

09/20 15:18 32.13  31.71  32.92   68.12  65.30  70.89   39.85  30.42  59.24  0.76  √ 

09/21 10:46 31.25  30.94  31.79   78.25  75.75  80.34   34.32  30.09  49.91  0.61  √ 

33.6 27.6 30.0 77 28 09/21 11:43 32.93  32.16  34.34   72.67  67.35  74.68   45.09  31.61  60.69  1.47  √ 

09/21 12:30 33.80  33.00  34.64   69.15  64.71  71.58   51.28  31.58  67.51  1.69  √ 

09/22 15:08 32.72  32.06  33.77   66.95  63.94  69.97   38.87  31.34  52.19  1.35  √ 
34.4 28.4 30.2 75 67 

09/22 15:36 31.64  31.28  32.16   68.90  66.84  72.23   32.24  30.85  33.56  0.96  √ 

09/23 12:08 32.33  31.57  33.24   65.35  62.33  67.01   38.95  30.72  64.18  1.28  √ 

33.7 28.3 30.1 74 52 09/23 15:10 32.59  31.72  33.29   63.93  61.47  66.50   35.17  30.24  41.29  1.04  √ 

09/23 16:51 30.62  30.45  30.86   72.31  71.27  73.65   31.32  30.00  33.21  1.08  √ 

1 Calculated by using the data collected at all stopping points. For the calculation of Tmrt, refer to the method section. 4 
2 VHD very hot days warning. Data from Hong Kong Observatory. 5 
3 Data collected from Hong Kong Observatory.  6 
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Appendix B Microclimate measurement and data preprocessing details 7 

B.1 Microclimate measurement instrument 8 

 Fig. B1 shows the backpack station we used to conduct mobile measurement of thermal 9 

exposure along with the participant, which was equipped with the devices introduced in Table 1. 10 

Ta, Rh, and v were measured with Testo 480 and calibrated sensors. They feature exposed 11 

sensors, which enable fast reaction time under walking condition. Two black globes were used to 12 

measure Tg, i.e., one 40mm black globe made from a table-tennis ball painted with black matt 13 

paint, and one 25.4mm copper black globe on Kestrel 5400 Heat Stress Tracker. The 25.4mm 14 

copper black globe on Kestrel 5400 Heat Stress Tracker requires 8min to reach 95% accuracy 15 

after dramatic environmental changes, according to the user manual. Although less accurate 16 

compared to a metallic black globe due to the thermal property of plastic [1], black globes made 17 

from table-tennis balls feature dramatically shorter response time, reported as short as several 18 

minutes [2,3], which is more appropriate for measurement during walking. Comparatively, the 19 

three Apogee net radiometers used to measure longwave and shortwave radiation in six 20 

directions feature a responding time of 1s, and can therefore well depict the radiation condition 21 

along the route without lag. 22 

 23 

Fig. B1 Backpack microclimate measurement instrument 24 
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 Among these devices, Kestrel 5400 measures Tg with a 25.4mm copper black globe. As 25 

introduced by the instrument supplier, it approximates standard Tg by using the ASHRAE’s 26 

Tmrt Equivalent method, 27 

𝑇𝑚𝑟𝑡 = [(𝑇𝑔 + 273.15)
4

+
1.10×108×𝑣0.6×(𝑇𝑔−𝑇𝑎)

ε×𝑑0.4 ]
0.25

 (B0) 28 

where 𝑇𝑔 is globe temperature, 𝑇𝑎 is air temperature, 𝑣 is wind velocity, 𝑑 is the globe diameter, 29 

and ε is the emissivity of the black globe. 30 

 Therefore, the output 𝑇𝑔 of Kestrel 5400, which is converted to standard black globe, is 31 

influenced by the v measured by itself, and by not using Kestrel to measure v, more accurate 𝑇𝑔 32 

could be obtained. We therefore didn’t measure v with Kestrel 5400. 33 

 In addition, to match the data sampling frequency of other devices, the measured Tg were 34 

interpolated by using the mean of adjacent two measured values. The interpolated values were 35 

only used in the cross correlation analyses. 36 

B.2 Details of thermal comfort and heat stress indices calculation 37 

B.2.1 Calculation of PET and mPET 38 

We calculated PET and mPET by using Biometeo 0.2.9 [4], which can perform more accurate 39 

calculation compared to Rayman. Table B1 demonstrates the input parameters for the calculation 40 

of PET and mPET. Default settings for personal data were applied, while inputs of clothing and 41 

activity were accommodated. For PET calculation, default clothing and activity level is used, so 42 

that the results can be compared with the past local benchmarks which have used the same 43 

settings. Yet for mPET, the metabolic rate 165W/m2 for walking on ground level at a speed of 44 

4km/h, and thermal insulation 0.5clo for summertime daily wearing (with underpants, shirt with 45 

short sleeves, light trousers, light socks, and shoes) were used [5], which are consistent with the 46 

situation of the walking survey. 47 

Table B1 Input parameters for calculation of PET and mPET 48 

Category Item PET calculation mPET calculation 

Personal data Height (m) 1.75 

Weight (kg) 75.0 

Age (a) 35 

Gender Male 

Clothing and activity Clothing (clo) 0.9 0.5 

Activity (W) 80 165 

Position Standing 



 

6 

 

B.2.2 Natural web bulb temperature estimation method 49 

To calculate HKHI by using formula (3), natural web bulb temperature (𝑇𝑛𝑤) is required as 50 

an input parameter. We spotted two ways of estimating 𝑇𝑛𝑤 with the microclimate variables we 51 

measured, i.e., Ta, Rh, v, and Tmrt. 52 

The first is a set of empirical models summarized by Bernard [6]. This estimation method is 53 

also adopted by Kestrel instruments, as introduced by Carter et al. [7]. This method estimates 54 

𝑇𝑛𝑤 from psychrometric wet bulb temperature (𝑇𝑝𝑤𝑏), and considers low and high radiant heat 55 

conditions, as shown in formula (B1). 56 

𝑇𝑛𝑤 = {
𝑇𝑎 − 𝐶 × (𝑇𝑎 − 𝑇𝑝𝑤𝑏), 𝑖𝑓 𝑇𝑔150 − 𝑇𝑎 < 4

𝑇𝑝𝑤𝑏 + 0.25(𝑇𝑔150 − 𝑇𝑎) + 𝑒, 𝑖𝑓 𝑇𝑔150 − 𝑇𝑎 ≥ 4
 (B1) 57 

where 𝐶 = {
0.85 , 𝑣 < 0.03

0.96 + 0.069 log10 𝑣 , 0.03 ≤ 𝑣 ≤ 3
1.0 , 𝑣 > 3

, and 𝑒 = {

1.1 , 𝑣 < 0.1
0.10

𝑣1.1 − 0.2 , 0.1 ≤ 𝑣 ≤ 1

−0.1 , 𝑣 > 1

. 58 

    Formula (B1) requires 𝑇𝑝𝑤𝑏 as an input, which can be estimated by using formula (B2). 59 

𝑇𝑝𝑤𝑏 = 0.376 + 5.79𝑃𝑎 + (0.388 − 0.0465𝑃𝑎) × 𝑇𝑎 (B2) 60 

where 𝑃𝑎 is ambient water vapor pressure in kPa. 61 

    Formula (B2) requires 𝑃𝑎 as an input, which can be estimated by using formula (B3), as 62 

applied in program in ISO 7933 [8]. 63 

𝑃𝑎 = (
𝑅ℎ

100
) × 0.6105𝑒

[
17.27𝑇𝑎

𝑇𝑎+237.3
]
 (B3) 64 

The second estimation method of 𝑇𝑛𝑤 is provided by ISO 7243 [9], which is based on the 65 

heat balance equation of a wet wick, as shown in formula (B4). 66 

4.18 × 𝑣0.444(𝑇𝑎 − 𝑇𝑛𝑤) + 10−8 × [(𝑇𝑚𝑟𝑡 + 273)4 − (𝑇𝑛𝑤 + 273)4] − 77.1 ×67 

𝑣0.421[𝑃𝑎𝑠(𝑇𝑛𝑤) − 𝑅ℎ × 𝑃𝑎𝑠(𝑇𝑎)] = 0 (B4) 68 

where 𝑃𝑎𝑠 is saturated water vapor pressure in kPa, which depends on temperature. Similar to 69 

formula B3, we followed formula B5 to estimate 𝑃𝑎𝑠. 70 
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𝑃𝑎𝑠 = 0.6105𝑒[
17.27𝑇

𝑇+237.3
]
 (B5) 71 

Considering that in this study, measurements were conducted under non-static conditions, 72 

which results in inaccurate Tg measurement due to the long responding time, we applied 73 

formulas B4 and B5 to estimate 𝑇𝑛𝑤 by using 𝑇𝑚𝑟𝑡 calculated from 6-directional longwave and 74 

shortwave radiation. Bisection method was implemented in R to estimate 𝑇𝑛𝑤 with an accuracy 75 

of 6 decimal places. It is also for the same reason that the 𝑇𝑛𝑤 output from Kestrel 5400 is not 76 

used for HKHI calculation.  77 
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Appendix C Field survey details 78 

C.1 Questionnaire used in the field survey 79 

Fig. C1-3 are the questionnaire used in the field survey. The participants were not given a 80 

hard copy of the questionnaire, but were asked verbally and responded the same time they 81 

experienced the environment. Their responses were taken by using an online survey system. We 82 

believe this is a better and more efficient way to have the participants experience the 83 

environment rather than reading and then responding to the questions in outdoor environment. 84 

 85 

Fig. C1 Questionnaire: Part I 86 
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 87 
Fig. C2 Questionnaire: Part II 88 
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 89 

Fig. C3 Questionnaire: Part III  90 
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C2 Walking routes and stopping points 91 

 As introduced in Section 2.1, three types of public spaces, i.e., open squares, vegetated 92 

spaces, and semi-outdoor spaces, are of our interests, and the walking paths are meant to link 93 

between these types of spaces. The diversity of the spaces one participant experienced is 94 

illustrated in Fig. C4-5, which shows the calculated SVF and GVI of the front view images along 95 

two walking trips. More examples of the three types of public spaces as stopping points from 96 

each of the five selected PHEs are shown in Fig. C6-8. With similar building typologies, and 97 

generic design of the public spaces, they exhibit a striking visual resemblance. 98 

 99 

Fig. C4 SVF and GVI variations along the walking trip on Aug. 9, 2023 in Lai Kok and Lai On Estates 100 

 101 

Fig. C5 SVF and GVI variations along the walking trip on Sep. 23, 2023 in Choi Hung Estate 102 
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 103 

Fig. C6 Sky view and panoramic view of the three types of public spaces as stopping points: open squares 104 
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 105 

Fig. C7 Sky view and panoramic view of the three types of public spaces as stopping points: vegetated spaces 106 
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 107 

Fig. C8 Sky view and panoramic view of the three types of public spaces as stopping points: semi-outdoor spaces  108 
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Appendix D Calculation of built environment characteristics  109 

 The panoramic video processing workflow is illustrated in Fig. D1. Video and image 110 

processing, and computer vision tasks were accomplished in Python. We used an Insta360 X3 111 

panorama camera to record the simultaneous exposure to the built environment. The video was 112 

first exported at a size of 3840×1920 pixel, and we extracted panoramic images by every second. 113 

By using a Mask2Former model trained on Cityscapes with Swin-S as backbone [10], semantic 114 

segmentation was conducted.  115 

 116 
Fig. D1 Panoramic video processing workflow with two examples. 117 

On one hand, following the algorithm of ref. [11], the upper half of the segmentation result 118 

is transformed into sky view image, and the areas classified as sky is further used to calculate 119 

SVF. We followed the algorithm by Rayman [12,13], as detailed in Rayman manual and by ref. 120 
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[14]. As pointed out by ref. [14], the calculation of SVF in Rayman does not weight to include 121 

the relation between incoming radiation and zenith angle, which leads to disparities in calculated 122 

SVF value compared to other methods. However, as Rayman is widely used to calculate SVF by 123 

using fisheye images, we still adopted this calculation method. 124 

On the other hand, the areas classified as vegetation and terrain are used to calculate GVI. It 125 

is calculated as the proportion of green pixels out of the total area [15], which describes the 126 

visibility of greenery at eye-level [16]. Due to the severe distortion at the top and bottom of the 127 

panoramic image, similar to ref. [17], we cropped the panoramic image by selecting the part that 128 

well represents the eye-level view, which is the upper 60° range and lower 40° range in our case, 129 

as shown in Fig. D1.  130 
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Appendix E Results supplementary 131 

E.1 Construction of path analysis and results details 132 

E.1.1 Hypothesis of pathway models 133 

 We aim at building pathway models among built environment characteristics, microclimate 134 

conditions, physiological parameter, thermal perceptions, and environmental perceptions to 135 

reveal their multivariate associations. The following presents the procedures that we formulate 136 

the pathway models we examined with the field data. 137 

 Model 1 (Fig. E1(a)) evaluates the multivariate association among built environment, 138 

microclimate conditions and three aspects of thermal perceptions. Built environment 139 

characteristic influences outdoor thermal environment [18], with SVF contributing significantly 140 

in summer in public spaces in PHEs [19]. And the thermal environment, quantified by 141 

microclimate and thermal comfort indices, further determines subjects’ thermal perceptions [20]. 142 

In particular, under transient condition, the sensation of thermal environment and its changes 143 

determine the comfort perception, and thermal pleasure is likely to be induced when the subject 144 

feels “comfortable” as the thermal stress is relieved [21,22]. With the considerations of the 145 

affective and hedonic aspects of thermal perception, we construct the three aspects of thermal 146 

perceptions in the current form.  147 

 Based on Model 1, dTskin is further incorporated as a physiological parameter, considering 148 

that Tsk is a crucial indicator of human physiological state and dynamic thermal comfort [22,23].  149 

 Based on Model 1, multi-sensory environmental perceptions and overall environmental 150 

quality are incorporated. The multi-sensory perceptions are contributors to perceived 151 

environment quality of the built environment [24]. Though not an in-situ survey, ref. [25] 152 

revealed the association between built environment and the perceived environmental quality 153 

consisting of safety, aesthetic value etc. We therefore detailed the pathway in this study with 154 

field in-situ data in the current form, which incorporates the thermal realm that can only be 155 

evaluated on site with thermal stimuli. 156 
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 Model 4 is constructed by jointly considering all factors stated above. For conciseness, we 157 

presented the optimized pathway models in Fig. 5. The detailed results of each model are 158 

presented in Section E.1.2. 159 

 160 

Fig. E1 Hypothesis of pathway models 161 

E.1.2 Detailed model results 162 

Fig. E2 presents the results of Model 1. We tested different combinations of microclimate 163 

and thermal comfort indices, and Model 1-3(Fig. E2(e)) is the model with best fit, as quantified 164 

by TLI and CLI. Compared to Model 1-1 (Fig. E2(a)), models excluding Ta as an exogeneous 165 

variable (Model 1-2, Fig. E2(b-d)) demonstrated better model fits. And the model using mPET 166 

(Fig. E2(d)) instead of Tmrt (Fig. E2(b)) demonstrated the best model fit. Therefore, mPET is 167 

used in subsequent analyses. 168 
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 169 

Fig. E2 Pathway models I 170 

 By incorporating dTskin as a physiological parameter, the extended model does not 171 

demonstrate enhanced model fit, as shown in Fig. E3(b). Nevertheless, dTskin is significantly 172 

associated with mPET but not v, or any aspects of thermal perceptions. 173 

 174 

Fig. E3 Pathway models II 175 
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 Models including multi-sensory environmental perceptions and overall environmental 176 

quality are shown in Fig. E4. Poor model fit was obtained when including all multi-sensory 177 

perceptions, as shown in Model 3-1 (Fig. E4(a)). Through step-by-step optimization, reasonable 178 

model fit (TLI/TFI>0.9) was obtained when only keeping SBV (Fig. E4(f)). 179 

 180 

Fig. E4 Pathway models III 181 

 The final pathway model is built by incorporating dTskin, as shown in Fig. E5(b), which fits 182 

well with the collected data (TLI/CFI>0.9, SRMR<0.08).  183 
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 184 

Fig. E5 Pathway models IV  185 



 

22 

 

E.2 Calculation of lagged response among variables 186 

The measured variables along two walking trips are shown in Fig. E6 and E7, which 187 

explicitly demonstrate the lagged response of Tg and Tsk to radiation, quantified as Tmrt 188 

calculated with six-directional radiation. To quantify the lagged response among SVF, Tmrt, Tg 189 

and Tsk_m, we applied cross correlation among variables. It calculates the correlation 190 

coefficients (ρ) between two time-series variables by shifting one relative to the other over a 191 

range of time lags. It allows us to determine both the strength of the correlation and the time lag 192 

at which the correlation peaks. Two elements are essential when determining the lagged response, 193 

i.e., the direction for data shifting, and the maximum time lag to search for the peak ρ. 194 

When determining the direction for data shifting, we considered the causal relationships and 195 

observed responses among variables. Since solar radiation is the cause of changes in Tg and 196 

Tsk_m, we therefore shift Tg and Tsk_m relative to Tmrt to find the peak correlation. For the 197 

comparison between Tg measured by Kestrel and black table-tennis ball, we observed that the 198 

Kestrel sensor exhibits a slower response, which is shown in the examples in Fig. E6 and E7. We 199 

therefore shift the Tg measured by Kestrel relative to the Tg measured with black table-tennis 200 

ball to determine the lag. For Tsk_m, data show that the response time of Tsk_m is comparable 201 

to that of the Tg measured with black table-tennis ball, while Tg measured by Kestrel shows a 202 

slower response, and we therefore shift Tg measured with Kestrel to Tsk_m, and search for both 203 

directions for Tg measured with black table tennis ball. As for SVF, which quantifies the sky 204 

exposure and directly influences radiation, we applied the same searching strategies as Tmrt. 205 

When determining the maximum time lag to search for the peak ρ, we mainly considered the 206 

data pattern. The observed faster responses of Tg measured with black table-tennis ball and 207 

Tsk_m to radiation is generally within 150s, and that of Tg measured with Kestrel is generally 208 

within 300s. Considering the dynamic environment along the walking trips, we consider it 209 

inappropriate to apply longer time span. 210 

The corresponding cross correlation results of data presented in Fig. E6 and E7 are 211 

presented in Fig. E8 and E9. The red arrows point at where the ρ reaches the maximum, which is 212 

identified as the lag time for that sample. When significant correlation does not exist (Fig. E8(h)), 213 

or a peak is not found within the search range, it is omitted in the plot presented in Fig. 8. 214 
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 215 

Fig. E6 Walking trip conducted on Aug. 9, 2023 (Note: The shaded areas are where the participant was stopped to respond to the 216 
questions on thermal and environmental perceptions, and the rest are the walking segments. Missing UTCI values are due to too 217 
low v. Same below.) 218 
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 219 

Fig. E7 Walking trip conducted on Sep. 23, 2023 220 
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 221 

Fig. E8 Cross correlations among variables for data presented in Fig. E6 222 

 223 

Fig. E9 Cross correlations among variables for data presented in Fig. E7 224 
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E.3 Poisson regression result details 225 

Table E1 Poisson regression models between the frequency of self-reported thermal displeasure and microclimate variables 226 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

mPET_sd - - - - - - - - 0.39** 0.41** 

mPET_mean - - - - - - - - 0.07 0.09 

UTCI_sd - 0.73** - 0.80** - 0.80** - 0.82** - - 

UTCI_mean - 0.14 - 0.07 - 0.06 - - - - 

UTCI_per - -0.90 - -0.09 - - - 0.48 - - 

HKHI_sd 2.13** - 2.38** - 2.44** - 2.35** - - - 

HKHI_mean -0.24 - -0.27 - -0.07 - - - - - 

HKHI_per 0.80 - 0.99 - - - -0.04 - - - 

v_sd -0.74 -1.14 - - - - - - -0.80 - 

v_mean 0.91 1.13 - - - - - - 0.76 - 

Intercept 5.86 -6.03 6.87 -3.60 1.13 -3.28 -0.81** -1.08** -3.43 -4.04 

AIC 197.75 199.02 196.72 198.84 195.56 196.85 195.88 197.07 192.52 190.39 

Note: _mean and _sd refer to the mean and SD of microclimate variables along the walking segments. – refers to that the variable 227 
is not included when building the model.  * and ** refer to significance at 0.05 (two-tailed) and 0.01 (two-tailed) respectively. 228 
Same below. 229 

Table E2 Poisson regression models between the frequency of self-reported thermal pleasure and microclimate variables 230 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

mPET_sd - - - - - - - - -0.07 -0.02 

mPET_mean - - - - - - - - 0.07 0.09 

UTCI_sd - -0.07 - 0.01 - 0.13 - -0.02 - - 

UTCI_mean - -0.17 - -0.20* - 0.05 - - - - 

UTCI_per - 2.35* - 2.66** - - - 1.05* - - 

HKHI_sd -0.01 - 0.23 - 0.33 - 0.01 - - - 

HKHI_mean -0.33 - -0.33* - 0.10 - - - - - 

HKHI_per 2.21** - 2.26** - - - 1.13** - - - 

v_sd -0.26 -0.27 - - - - - - -0.64 - 

v_mean 0.62 0.52 - - - - - - 0.85* - 

Intercept 10.04* 6.92* 10.53* 8.10* -1.94 -0.92 1.09** 1.05** -1.73 -2.08 

AIC 254.62 257.74 255.28 256.05 263.71 262.92 257.29 258.35 261.11 261.67 

Table E3 Poisson regression models between the frequency of self-reported thermal pleasure and microclimate variables 231 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

mPET_sd - - - - - - - - 0.09 0.13 

mPET_mean - - - - - - - - 0.07 0.08* 

UTCI_sd - 0.23 - 0.30* - 0.36** - 0.28* - - 

UTCI_mean - -0.08 - -0.12 - 0.05 - - - - 

UTCI_per - 1.26 - 1.75* - - - 0.80* - - 

HKHI_sd 0.78** - 1.03** - 1.12** - 0.87** - - - 

HKHI_mean -0.33* - -0.35* - 0.03 - - - - - 

HKHI_per 1.78** - 1.89** - - - 0.65* - - - 

v_sd -0.42 -0.60 - - - - - - -0.70 - 

v_mean 0.71* 0.72* - - - - - - 0.82* - 

Intercept 10.22** 3.55 10.96** 5.19 0.29 -0.98 1.08** 0.97** -1.49 -1.92 

AIC 286.93 291.97 289.88 292.51 298.32 296.16 294.27 292.67 290.02 292.00 

  232 
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